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Preface

God does not often clap his hands. When He does, everybody should dance.
(African proverb)

This manuscript aims at offering a comprehensive and systematic descrip-
tion of agreement abstractions in distributed computing. The manuscript can
be a valuable tool for those that want to have a better knowledge of some
fundamentals in distributed computing as well as to those that need to ap-
ply this knowledge when building large and complex distributed applications.
Although the manuscript is written in a self-contained manner, it is assumed
that the reader has previously been exposed to elementary notions of pro-
gramming and operating systems.

Agreement

The problem of distributed computing consists for a set of processes, each
representing a computer, to reach some form of sophisticated agreement,
based on some more primitive form of initial agreement. Had no notion of
agreement been required, one could simply build a distributed program by
superposing independent centralized programs. The heart of distributed com-
puting is indeed agreement.

The processes might for instance have initially agreed on who they are
(e.g., IP addresses) and some format for representing messages (e.g., IIOP),
and might need to agree on some reliable way of exchanging messages (e.g.,
TCP). They might then go a step further and try to agree on some common
final value based on some initial values (e.g., consensus or atomic commit-
ment). They might similarly need to agree on some total order to deliver
messages, or some global notion of logical time to compensate the absence of
physical time.

The distributed computing problem is complicated because some of the
processes might fail while others might keep operating. It can however be



simplified if the programmer is provided with abstractions that factor out the
difficulty of various forms of agreement that can be reached, despite the failure
of some of these processes. By encapsulating many tricky issues, agreement
abstractions bridge the gap between network communication layers, usually
frugal in terms of reliability guarantees, and distributed application layers,
usually demanding in terms of reliability.

Organization

The manuscript follows an incremental approach and was primarily built as a
textbook for teaching. It introduces the fundamental agreement problems in
an intuitive manner and builds sophisticated agreement abstractions on top
of more primitive agreement ones, assuming a simple model of a distributed
system first, later revisiting the same basic abstractions in more challenging
models.

In Chapter 1 we motivate the need for agreement abstractions and we
present the programming model used in the book to build agreement algo-
rithms. In Chapter 2 we present different forms of assumptions about the
underlying distributed environment. Basically, we present the minimal form
of initial agreement that the processes should be sharing. In Chapter 3 we
introduce specific forms of agreement abstractions: those related to the re-
liable delivery of messages broadcast to a group of processes. In Chapter 4
we introduce the consensus abstraction. Chapter 5 covers the totally ordered
delivery of messages broadcast to a group of processes. Chapter 6 consid-
ers failure-sensitive forms of agreement, namely, leader election, terminating
reliable broadcast and non-blocking atomic commit.

Acknowledgments

We have been exploring the world of agreement for over a decade now. During
that period, we were influenced by many researchers in the field of distributed
computing. Their work is referenced throughout the manuscript. A special
mention to Leslie Lamport and Nancy Lynch for having defined the fasci-
nating field of distributed computing, and to the Cornell band, including
Ken Birman, Robert van Renessee, Fred Schneider, and Sam Toueg, for their
seminal work on various forms of broadcast abstractions.

We would like to express our gratitude to our undergraduate students
from the Swiss Federal Institute of Technology in Lausanne (EPFL) and
the University of Lisboa, for serving as cobayes of preliminary drafts of
this manuscript. Partha Dutta, Corine Hari, Petr Kouznetsov and Bastian
Pochon, PhD students at the Distributed Programming Laboratory (EPFL),
suggested many improvements to the algorithms presented in the manuscript.
Corine and Bastian were also instrumental in setting up the exercice sessions.

Rachid Guerraoui and Luis Rodrigues

VIII



Contents

1. Introduction ............ ... .. i 1
1.1 Applications .......ouit i e e 1
1.2 The End-to-end Argument .. ...... ... ... 3
1.3 Programming Abstractions ............. ... . oo, 4

2. Models ... ... 9
2.1 Processes and Links ......... .. .. . . i 9

2.1.1 Local and Global Events .......................... 9
2.1.2 Perfect Links ... 10
2.1.3 Algorithms and Steps . ..., 11
2.2 Failures . ...t e 11
2.2 1 OmiSSIONS « .ttt ti e it 11
222 Crashes ... 12
2.2.3 Crashes and Recoveries ............. ... ... ... .... 12
2.2.4  Arbitrary Behaviors ........ ... .. oo 12
2.3 Timing Assumptions .. .........c.oouiiiiinnenenn... 13
2.3.1 Synchronous Model . ............... .. .. .. ... .... 13
2.3.2 Asynchronous Model.............. .. ... .. oo .. 15
2.3.3 Partially Synchronous Model....................... 16
2.3.4 Indulgence......... ... ... .. .. 18
EXercises . ..o 20
COTTECEIONS ot ittt e e e e e 20

3. Reliable Broadcast............ ... ... ... ... . ... ... ... ... 23

3.1 Intuition .. ... ... . 23
3.1.1 Client-Server Computing .......................... 23
3.1.2 Multi-tier Systems.......... ... .. 24

3.2 Best-Effort Broadcast ............ .. .. . i 24
3.2.1 Specification .. ... .. ... ... 24
3.2.2 Algorithm ... o e 25

3.3 Regular Reliable Broadcast ........... ... ... ... ... ... 26
3.3.1 Specifications . ......... .. i 26
3.3.2  An Optimistic Reliable Broadcast Algorithm......... 26

3.3.3 A Pessimistic Reliable Broadcast Algorithm ......... 28



3.4 Uniform Reliable Broadcast.......... ... ..o ... 30

3.4.1 Specifications .. ........uuiiiiiii 30
3.4.2 A Uniform Reliable Broadcast Algorithm............ 31
3.4.3 An Indulgent Uniform Reliable Broadcast Algorithm.. 32
3.5 Causal Order Broadcast ............ ... . .. 32
3.5.1 Specifications .......... ... i 33
3.5.2 A Non-Blocking Algorithm ........................ 36
3.5.3 Garbage Collection ................. ... ... ....... 37
3.5.4 A Blocking Algorithm.......... ... .. .. ... ..... 38
EXercises . ... e 40
COITeCHIONS .« ¢\ttt e e e 41
COMSEINSUS . ¢\ vttt ittt e ettt e 45
4.1 Regular Consensus ..........c.ouvenirmeneneinenenaenennn 45
4.2 Specifications . ...... ... e 45
4.2.1 A Flooding Algorithm ..... ... ... .. .. ... ...... 46
4.2.2 A Hierarchical Algorithm............ ... ... .. ... 48
4.3 Uniform COonSensus - . . ... ..ttt cae e 49
4.3.1 Specification .. .. ... 49
4.3.2 A Flooding Uniform Consensus Algorithm........... 51
4.3.3 A Hierarchical Uniform Consensus Algorithm ........ 51
4.4 TIndulgent Consensus Algorithms.......... ... ... ... ..... 54
4.4.1 The Traffic Light Consensus Algorithm.............. 55
4.4.2 The Round-About Consensus Algorithm ............ 56
4.5 Total Order Broadcast .......... ..., 57
4.5.1 Specification .. .. ... ... 58
4.5.2 A total order broadcast algorithm .................. 58
4.6 EXErCiCes . ... .v i e 61
4.7 COrreCtions . . ... u ittt e 61
Failure-Sensitive Agreement .............................. 69
5.1 Terminating Reliable Broadcast ............ ... ... ...... 69
5.1.1 Imtuition ... e 69
5.1.2 Specifications . ......... ... i 70
5.1.3 Algorithm ...... ... 70
5.2 Non-blocking Atomic Commit............ ... ... ... ..... 73
5.2.1 Imtuition ....... ... 73
5.2.2 Specifications .. ... ... .. . 73
5.2.3 Algorithm ...... ... 73
5.3 Leader Election ......... ... i 76
5.3.1 Imtuition ......... .. .. 76
5.3.2 Specification .. ... ... .. 76
5.3.3 Algorithm ... . .. 7
5.4 Group Membership ........ ... ... . 77
5.4.1 Intuition .......coiii i 7



5.4.2 Specifications . ........ .. . i 78

5.4.3 Algorithm ........ .. .. . .. i 78

5.0 EXOICICES o oottt e e 81
5.6 COrreCtiOnS .. vvv vttt et e e e 81
References . . ... 86

X1



1. Introduction

I could have been some one. So could any one. (The Pogues)

This chapter first motivates the need for agreement abstractions and gives
a hint on the characteristics of these abstractions. It then advocates a mod-
ular strategy for the development of distributed programs by encapsulating
agreement abstractions within Application Programming Interfaces (APIs).
A concrete example API is given to illustrate the typical abstractions offered
by an agreement toolkit. This should also be viewed as a simple example of
the event-based model used throughout the manuscript to describe agreement
algorithms.

1.1 Applications

An obvious target of agreement abstractions are applications that require
coordination and dissemination of information among several participants.
Examples of such applications are multi-user cooperative applications such
as virtual-environments, distributed shared spaces, cooperative editors, repli-
cated systems, and distributed databases. These applications indeed need
agreement abstractions, but with a different range of requirements. Often,
heterogeneous requirements can only be satisfied by the simultaneous use of
different agreement abstractions. For instance, the dissemination of an au-
dio stream can be performed using efficient best-effort broadcast primitives (a
weak form of agreement), the acquisition of a lock for a shared object requires
reliable and ordered communication (stronger forms of agreement), whereas
the termination of a transaction requires an atomic commitment protocol (an
even stronger form of agreement).

Event Dissemination Systems. These are a typical class of applications
for which agreement might be useful. In such applications, processes may
play one of the following roles: information producers, also called publishers,



or information consumers, also called subscribers. The resulting interaction
paradigm is often called publish-subscribe. Publishers produce information
in the form of notifications. Subscribers register their interest in receiving
certain notifications. Different variants of the paradigm exist to match the
information being produced with the subscribers interests, including channel
based, subject based, content based or type based subscriptions. Indepen-
dently of the subscription method, it is very likely that several subscribers
are interested in the same notifications, which will then have to be multi-
cast. Typically, and for fairness issues, the subscribers need to agree here on
the set of messages they deliver. In several publish-subscribe applications,
producers and consumers interact indirectly, with the support of a group of
intermediate cooperative brokers. In such cases, agreement is not only useful
to support the dissemination of information but also for the coordination of
the brokers.

Replicated Services. The need to support groups of coordinated processes
does not always derive directly from the functional requirements of the ap-
plication. In fact, it often appears as an artifact of the solution to satisfy
some specific non-functional requirements such as fault-tolerance or load-
balancing. One of the techniques to achieve fault-tolerance in distributed
environments is the use of replication. Briefly, replication consists of execut-
ing several copies of the same component to ensure continuity of service in
case a subset of these components crashes. No specific hardware is needed:
fault-tolerance through replication is software-based. For replication to be
effective, the different copies must be maintained in a consistent state. If
replicas are deterministic, one of simplest manners to attain this goal is to
ensure that all replicas receive the same set of requests in the same order.
Typically, such guarantees are enforced by a reliable group communication
primitive called total order broadcast: the processes need to agree here on
the sequence of messages they deliver. Of course, algorithms that implement
such a primitive are rather tricky, and providing the programmer with an
abstraction that encapsulates these algorithms makes the programming of
replicated components easier. After a failure, it is desirable to replace the
failed replica by a new component. Again, this calls for systems with dy-
namic group membership and for additional auxiliary abstractions, such as a
state-transfer mechanism that simplifies the task of bringing the new replica
up-to-date.

Databases. Distributed and replicated databases are particular cases of ap-
plications where agreement abstractions may play an important role. Repli-
cation is typically used here to improve the read-access performance to data
by placing it close to the processes where it is supposed to be queried. Agree-
ment abstractions can be used here to ensure that all transaction managers
obtain a consistent view of the running transactions and can make consistent
decisions on the way these transactions are serialized. Additionally, such ab-



stractions can be used to coordinate the transaction managers when deciding
about the outcome of the transactions.

1.2 The End-to-end Argument

Agreement abstractions may be useful but are sometimes difficult to im-
plement. In some cases, no simple algorithm is able to provide the desired
abstraction and the algorithm that solves the problem can have a high com-
plexity in terms of the number of steps and messages. Therefore, depending
on the system model, the network characteristics, and the required quality of
service, the overhead of an agreement primitive can range from the negligible
to the almost impairing.

Faced with performance constraints, the application designer may be
driven to mix the relevant agreement logic with the application logic, in an
attempt to obtain an optimized integrated solution. The intuition is that such
a solution would perform better than a modular approach, where agreement
abstractions are implemented as independent services that can be accessed
through well defined interfaces. The approach can be further supported by
a superficial interpretation of the end-to-end argument (Saltzer, Reed, and
Clark 1984), that states that most complexity should be implemented at the
higher levels of the communication stack. This is indeed true for any abstrac-
tion.

However, in the case of agreement, even if some performance gains can be
achieved by collapsing the application and the underlying agreement layers,
such approach an has many disadvantages. First, it is very error prone. Some
of the algorithms that will be presented in this manuscript have a reasonable
amount of complexity and exhibit subtle dependencies among their internal
components. An apparently obvious “optimization” may break the algorithm
correctness. Even if the designer achieves the amount of expertise required to
master the difficult task of integrating these algorithms with the application,
there are several other reasons to keep both implementations independent.
The most important of these reasons is that there is usually no single so-
lution to solve a given agreement problem. Instead, different solutions have
been proposed and these solutions are not strictly superior to each other: each
has its own advantages and disadvantages, performing better under different
network or load conditions, making different trade-offs between network traf-
fic and message latency, etc. To rely on a modular approach allows the most
suitable implementation to be selected when the application is deployed, or
even commute in run-time among different implementations in response to
changes in the operational envelope of the application.

Ultimately, one might indeed consider optimizing the performance of the
final release of a distributed application and bypassing any intermediate ab-
straction layer. The understanding of the candidate algorithms to implement
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Figure 1.1. Composition model

these abstractions, and some of the associated impossibility results, is fun-
damental before they can be safely merged with the code of a distributed
application. Furthermore, we strongly believe that, in many distributed ap-
plications, especially those that require many-to-many interaction, building
preliminary prototypes of the distributed application using agreement ab-
stractions can be very helpful.

1.3 Programming Abstractions

Basic agreement abstractions are typically encapsulated through application
programming interfaces (API). We will informally discuss here a simple ex-
ample APIL.

To describe our APIs and the algorithms implementing these APIs, we
shall consider, throughout the manuscript, an asynchronous event-based com-
position model. Every process hosts a set of software modules, called com-
ponents. Each component is identified by a name, characterized by a set of
properties, and provides an interface in the form of the events that it accepts
and produces.

The properties of a component can be separated in two different classes:
safety and liveness. Safety properties state that the system cannot do some-
thing wrong, e.g., processes should not decide on different values or deliver
messages in different orders. Of course, safety properties are not enough, since
a good way of preventing bad things from happening consists in simply do-
ing nothing (in some countries, some public services seem to understand this
rule quite well). Therefore it is necessary to add some liveness properties to
ensure that eventually something good happens, e.g., processes need to de-
cide some value or deliver some messages. Consider for instance a traditional
inter-process communication service such as TCP: it ensures that messages



exchanged between two processes are not lost or duplicated, and are received
in the order they were sent. The very fact that the messages are not lost is
a liveness property. The very fact that the messages are not duplicated and
received in the order they were sent are more safety properties.

Each component is typically organized as a software stack, within every
process: every component represents a specific layer in the stack. The appli-
cation layer is on the top of the stack whereas the networking layer is at the
bottom. The agreement abstractions are in the middle. Components within
the same stack communicate through the exchange of events, as illustrated
in Fig. 1.1. A given agreement abstraction is typically materialized by a set
of components, each running at a given process.

According to this model, each component is constructed as a state-
machine whose transitions are triggered by the reception of events. Events
may carry information (such as a data message, a group view, etc) in one or
more attributes. Events are denoted by ( Event, attl, att2, ... ). Typically,
each event is treated by a dedicated handler. The processing of an event may
result in new events being created and triggered on the same or on other
components. Events from the same component are triggered on a component
in the same order they were created. Note that this FIFO (first-in-first-out)
order is local and different from the distributed one that might need to be
preserved among processes (i.e., components on different processes). The code
of each component looks like this:

upon event { Eventl, attl, att?, ... ) do
something
// send some event
trigger ( Event2, attd.att3, ... );

upon event { Event3, att}, att3, ... ) do
something else
// send some other event
trigger ( Event4, att}, att3, ... );

This decoupled and asynchronous way of interacting among components
matches very well the requirements of distributed applications: for instance,
new processes may join or leave the system at any moment and a process must
be ready to handle both membership changes and reception of messages at
any time. Hence, a process should be able to concurrently handle several
events, and this is precisely what we capture through our component model.

A typical interface includes the following types of events:

e Request events are used by a component to request a service from another
component: for instance, the application layer might trigger a Request event



at a component in charge of broadcasting a message to a set of processes in
a group with some reliability guarantee, or proposing a value to be decided
on by the group.

e Confirmation events are used by a component to confirm the completion
of a request. Typically, the component in charge of the broadcast in the
example above will confirm to the application layer that the message was
indeed broadcast or that the value suggested has indeed been proposed to
the group: the component uses here a Confirmation event.

e Indication events are used by a given component to deliver information
to another component. Considering the broadcast example above, at every
process that is a destination of the message, the component in charge of
implementing the actual broadcast primitive will typically perform some
processing to ensure the corresponding reliability guarantee, and then use
an Indication event to deliver the message to the application layer. Simi-
larly, the decision on a value will be indicated with such an event.

A typical execution at a given layer consists of the following sequence of
actions. We consider here the case of a broadcast kind of agreement, e.g., the
processes need to agree on whether or not to deliver a message broadcast by
some process. The execution is initiated by the reception of a request event
from the layer above. To satisfy a request, the layer will send one or more
messages to its remote peers using the services of the layer below. Messages
sent by its peers are also received using the services of the underlying layer.
When a message is received, it may have to be stored temporarily until the
agreement property is satisfied, before being delivered to the layer above.
This dataflow is illustrated in Fig. 1.2. Events used to deliver information to
the layer above are indications. In some cases, the layer may confirm that a
service has been concluded using a confirmation event.

Layer n+1

{request [ indication

(deliver)

Layer n

(receive)

request indication

Layer n-1

Figure 1.2. Layering



The lowest layer in the software stack interfaces the links that provide
connectivity among processes. At the highest level of abstraction, we assume
that every pair of processes is connected by a bidirectional link, a topology
that provides full connectivity among the processes. In practice, different
topologies may be used to implement this abstraction. Concrete examples,
such as the ones illustrated in Fig. 1.3, include the use of a broadcast medium
(such as an Ethernet), a ring, or a mesh of links interconnected by bridges
and routers (the Internet). Many implementation refine the abstract network
model to make use of the properties of the underlying topology.

OO
Q%Q ol el

(a) (b) (c) (d)

Figure 1.3. The link abstraction and different instances.

To simplify the presentation of the components, we assume that a special
( Init ) event is generated automatically by the run-time system when a
component is created. This event is used to perform the initialization of the
component. Using this interface, a simple application that consists in keeping
track of the set of processes in a group would look like the code depicted in
Fig. 1.4.

upon event ( Init ) do
trigger ( JoinRequest, myGroup, myld );

upon event ( GroupViewIndication, groupView ) do
GroupView nv = e.groupView;
print (”We are now” + nv.size() + “members”);
trigger ( MulticastRequest, myGroup, QoS, ”Hello world” );

upon event ( MulticastIndication, group, from, QoS, data ) do
print (e.data);

Figure 1.4. Simple example interface.






2. Models

It does not matter what I believe, it matters what I am able to prove.
(Inspector Derrick)

Reasoning about distributed algorithms in general, and in particular
about algorithms that implement agreement abstractions, first goes through
defining a clear model of the distributed system environment where these
algorithms are supposed to operate. In a distributed system, a model can be
viewed as a set of assumptions about the allowable behavior of the processes
and their communication links in the distributed system.

2.1 Processes and Links

2.1.1 Local and Global Events

We consider here N processes in the system, denoted by pi,ps,..pn (some-
times we also denote the processes by p, ¢, r). These processes communicate
by exchanging messages. Unless it fails, every process is supposed to execute
the algorithm assigned to it, through the set of components implementing
the algorithm within that process. Our unit of failure is the process; if it
fails, all its components are supposed to have failed as well: otherwise, all
the components are supposed to correctly execute the part of the algorithm
assigned to them. Models differ according to the nature of the failures that
are considered.

When executing its algorithm, a process (that has not failed) alternates
between executing some local computation (local event) and exchanging mes-
sages (global event): it is important to notice here that the communication
between local components of the very same process is viewed as a local com-
putation and not as a communication. Again, the process is the unit of com-
munication, just like it is the unit of failures.



Module:
Name: PerfectPointToPointLink (pp2p).
Events:

Request: ( pp2pSend, dest, m ): Used to request the transmission of
message m to process dest.

Indication:( pp2pDeliver, src, m ): Used to deliver message m received
from process src.

Properties:

PL1: Reliable delivery: If p; and p; are correct, then every message sent
by p; to pj; is eventually delivered by p;.

PL2: No duplication: No message is delivered to a process more than once.

PL3: No creation: If a message m is delivered to some process p;, then m
was previously sent to p; by some process p;.

Module 2.1 Interface and properties of perfect point-to-point links.

2.1.2 Perfect Links

It is convenient when devising a distributed algorithm to assume that links
are perfect and never fail. The perfect link abstraction is captured by the
“Perfect Point To Point Link” module, i.e., Mod.2.1. The interface of this
module consists of two events: a request event (to send messages) and an
indication event (used to deliver the received messages). Perfect links are
characterized by the properties PL1-PL3.

It may seem awkward to assume that links are perfect when it is known
that real links may crash, lose and duplicate messages. However, this assump-
tion only encapsulates the fact that these problems can be addressed by some
low level protocol. As long as the network remains connected, and processes
do not commit an unbouded number of omission failures, link crashes may be
masked by routing algorithms. The loss of messages can be masked through
re-transmission. This functionality is often found in standard transport level
protocols such at TCP. These are typically supported by the operating system
and do not need to be re-implemented.

The details of how the perfect link abstraction is implemented is not rele-
vant for the understanding of the fundamental principles of many agreement
algorithms. On the other hand, when developping actual distributed applica-
tions, these details become relevant. For instance, it may happen that some
agreement algorithm requires the use of sequence numbers and message re-
transmissions, regardless of the properties of the underlying links. In this
case, in order to avoid the redundant use of similar recovery mechanims at
different layers, it may be more efficient to rely just on weaker links.
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2.1.3 Algorithms and Steps

It is convenient to view the execution of an algorithm by a process as a
sequence of steps: steps are executed according to ticks of the internal clocks
of processes: one step per clock tick. A step consists in receiving a message
from another process, executing a local computation and sending a message
to some process. The fact that a process has no message to receive or send,
but has some local computation to perform, is simply captured by assuming
that messages might be nil, i.e., the process receives the nil message.

When we present an algorithm we analyse its cost using two metrics:
(1) the number of messages required to terminate the algorithm and (2) the
number of communication steps. In short, a communication step of the al-
gorithm occurs when a process sends a message and another process has to
wait for this message to arrive to complete a phase in the algorithm. The
number of communication steps is associated with the latency an implemen-
tation exhibits, since the network latency is typically a limiting factor on the
performance of distributed algorithms. Distributed system models also differ
according to the restrictions imposed on the speed at which local steps are
performed and messages are exchanged.

In short, two aspects are of utmost importance when defining a model of
a distributed environment: the assumptions about the possible failure modes
of the processes and the assumptions about the behavior of the processes in
the time domain. We discuss these two aspects below.

2.2 Failures

The very characteristic of a distributed environment is the possibility of par-
tial failures: some of the processes might fail whereas others might be correct.
In fact, we consider this characteristic as the definition of a distributed sys-
tem and that is exactly how we differentiate it from a parallel system. It is
usual to quote Leslie Lamport here: “a distributed system is one that stops
your application because a machine you have never heard of has crashed”.
The challenge of researchers in distributed computing is precisely to devise
algorithms that provide those processes that did not fail with enough co-
herent information so that they can operate correctly despite the failure of
others.

2.2.1 Omissions

One typical kind of faults to consider is the omission. An omission fault
occurs when a process does not send (resp receive) a message it is supposed
to send (resp receive): typically, omission faults are due to buffer overflows
or network congestions and result in lost messages. With an omission, the
process deviates from the algorithm it is supposed to execute by dropping
some messages that should have been exchanged with the external world.

11



2.2.2 Crashes

An interesting particular case of omissions is when a process executes its
algoritm correctly, including the exchange of messages with other processes,
until some time ¢, after which the process does not send any message to any
other process. This is what happens if the process for instance crashes and
never recovers. We talk here about a crash fault and a crash stop model.

2.2.3 Crashes and Recoveries

The crash-recover fault model considers that processes can indeed crash,
and hence stop sending messages, but later recover. This can be viewed as
a model with omissions with one exception however: a process migh suffer
amnesia when it crashes and looses its internal state. We typically assume
here that every process has, in addition to its regular volatile memory, a
stable storage, which can be accessed through store and retrieve primitives.
When a process recovers, it preserves all data that has been saved in the
stable storage but looses all the remaining data that was preserved in volatile
memory. Clearly, we obtain a model with omissions if we consider that every
process stores every update to its state in stable storage. This is not very
practical because access to stable storage is usually expensive. A crucial issue
in devising algorithms for the crash-recover model is to minimize the access
to stable storage.

2.2.4 Arbitrary Behaviors

Finally, the arbitrary fault model is the most general one. It makes no as-
sumptions on the behavior of faulty processes, which are allowed any kind of
output and in particular can send any kind of messages. This kind of fault
model is also called the malicious or the Byzantine model (Lamport, Shostak,
and Pease 1982).

Not surprisingly, arbitrary faults are the most expensive to tolerate, but
this is the only acceptable model when an extremely high coverage is required
or when there is the risk of some processes being controlled by malicious users
that deliberately try to prevent correct system operation.

The failure model we shall mainly consider throughout the manuscript is
the crash model. Hence, unless indicated otherwise, we exclude other kinds
of failures. Furthermore, as discussed below, we shall assume sometimes that
failures can be detected through some failure detector modules. Such modules
can however only detect crashes that have occured in the past and cannot
guess the future.

12



2.3 Timing Assumptions

When considering timing assumptions, two extreme approaches can be used
to characterize the behavior of a distributed system in the time domain: syn-
chronous and asynchronous models. We introduce these two models below
and discuss their properties. We also point out the need for intermediate par-
tial synchronous models and present an interesting property of such models.

2.3.1 Synchronous Model

Properties. Assuming a synchronous model comes down to assuming the
following three properties:

1. Synchronous processing. There is a known upper bound on processing
delays. That is, the time taken by any process to execute a local step
is always less than this bound. Remember that a local step groups (1)
the reception of a message (possibly nil) sent by some other process, (2)
a local computation, and (3) the sending of a message to some other
process.

2. Synchronous communication. There is a known upper bound on message
transmission delays. That is, the time period between the time at which
a message is sent and the time at which the message is received by the
destination process is less than this bound.

3. Synchronous clocks. There is a known upper bound on the rate at which
the local physical clock of each process drifts from a global real time
clock (we make here the approximate assumption that such a global real
time clock exists in our universe, i.e., at least to God). Remember here
that every process has a local physical clock and every process executes
a local step at every tick of its clock. The synchronous clock property
means that the local clock differs from the global one up to a known
upper bound.

Perfect Failure Detection. In synchronous environments, if we assume
that processes can only fail by crashing, and processes that crash do not
recover, failures can be accurately detected using timeouts. For instance, as-
sume that a process sends a message to another process and awaits a response.
If the recipient process does not crash, then the response is guaranteed to
arrive within a time period equal to the worst case processing delay plus two
times the worst case message transmission delay (ignoring the clock drifts).
Hence, a simple method for detecting a crash is to rely on timeouts: using its
own clock, the process can measure the worst case delay required to obtain
a response and detect a crash in its absence (the crash detection will usually
trigger a corrective procedure).

It is a good practice to encapsulate the way the failures are detected in
a synchronous model through the use of a perfect failure detector module.
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Module:

Name: PerfectFailureDetector (P).
Events:

Indication: ( crash, p; ): Used to notify that process p; has crashed.
Properties:

PFD1: FEwventual strong completeness: Eventually every process that
crashes is permanently suspected by every correct process.

PFD2: Strong accuracy: No process is suspected by any process before it
crashes.

Module 2.2 Interface and properties of the perfect failured detector.

In short, this module outputs, at every process, the set of processes that are
suspected to have crashed. A perfect failure detector can be described by the
accuracy and completeness properties (Chandra and Toueg 1996) of Mod.2.2.

As we shall see in the next chapters, this module provides a very conve-
nient abstraction upon which to build agreement abstractions. In particular,
none of the agreement algorithms that we will present explicitely manipulates
timing assumptions: these assumptions are encapsulated within a failure de-
tector module.

Physical Time. In most distributed environments, a perfect failure detector
can only be implemented if the system is synchronous. On the other hand,
there are several characteristics of a synchronous system that are not captured
by the perfect failure detection abstraction. For instance, in a synchronous
system the following additional services can also be implemented:

e Timed failure detection. Every failure is detected within bounded time.
Hence, the processes can implement an even stronger failure detection ser-
vice such that, whenever a process detects the crash of some other process
q, all processes that did not crash yet, detect the crash of ¢ within a known
bounded time.

e Measure of transit delays. It is possible to measure the delays in the links
and, from there, infer which nodes are more distant or connected by slower
or overloaded links.

e Coordination based on time. One can implement a lease abstraction that
provides the right to execute some action that is granted for a fixed amount
of time (Gray and Cheriton 1989), e.g., manipulating a specific file.

e Worst case performance: by establishing a bound on the number of faults
and on the load of the system, it is possible to derive worst case execution
times for a given algorithm. This allows a process to know when a message
of his has been received by all correct processes. This can be achieved even
if we assume that processes commit omission failures without crashing, as
long as we bound the number of these failures.

14



e (Clock synchronization. The synchronous model makes it possible to syn-
chronize the clocks of the different processes in such a way that they are
never apart by more than some known constant ¢, known as the clock syn-
chronization precision. Synchronized clocks allow processes to coordinate
their actions and ultimately execute synchronized global steps. Using syn-
chronized clocks makes it possible to timestamp events using the value of
the local clock at the instant they occur. These timestamps can be used to
order events in the system.!

2.3.2 Asynchronous Model

Assuming an asynchronous model comes down to not making any timing as-
sumption. If a problem can be solved in the asynchronous model, the solution
can also be applied to the synchronous model without risking any correctness
violation when the synchronous assumptions do not hold.

In the asynchronous model, processes have no access to synchronized
clocks. Therefore, the passage of time can only be measured based on the
transmission and reception of messages, i.e., time is defined with respect to
communication. Time measured this way is called logical time. In proba-
bly the most influential paper in the area of distributed computing, Leslie
Lamport proposed the following rules to measure the passage of time in an
asynchronous distributed environment (Lamport 1978):

e Each process p keeps an integer called logical clock [, initially 0.

e Any time a local event occurs at process p (i.e., p executes a local step),
the logical clock [, is incremented by one unit.

e When a process sends a message, it timestamps the message with the value
of its logical clock at the moment the message is sent.

e When a process receives a message m with timestamp [,,, process p incre-
ments its timestamp in the following way: I, = maxz(l,, ;) + 1.

An interesting aspect of logical clocks is the fact that they capture cause-
effect relations in systems where the processes can only interact through
message exchanges. We say that an event e; may potentially have caused
another event ez, denoted as e; — ey if the following relation, called the
happened-before relation, applies:

e ¢; and ey occurred at the same process p and e; ocurred before ez (Fig. 2.1
(a))-

L If there was a system where all delays were constant, it would be possible to
achieve perfectly synchronized clocks (i.e., where § would be 0). Unfortunately,
such a system cannot be built. Practical synchronous system delay are bounded
but variable. This means that § is always greater than zero and events within
¢ cannot be ordered. This is not a significant problem when ¢ can be made
small enough such that only concurrent events (i.e., events that are not causally
related) can have the same timestamp.
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Figure 2.1. The happened-before relation.

e ¢; corresponds to the transmission of a message m at a process p and e to
the reception of the same message at some other process ¢ (Fig. 2.1 (b)).
e there exists some event e’ such that e; — ¢’ and e’ — ex(F'ig. 2.1(c)).

It can be shown that if the events are timestamped with logical cloks, then
e1 — e = t(e1) < t(ez). Note that the opposite implication is not true. As we
discuss in the next chapters, even in the absence of any synchrony assumption,
and using only a logical notion of time, we can solve some (weak) agreement
problems. Stronger agreement problems do however need some synchrony
assumptions as we shall point out in the next section.

2.3.3 Partially Synchronous Model

Synchronous vs Asynchronous. A major limitation of the synchronous
model is its coverage, i.e., the difficulty of building a system where the as-
sumptions hold with high probability. This typically requires careful analysis
of the network and processing load and the use of appropriate processor and
network scheduling algorithms. In fact, there is an active area of research
devoted to the study of techniques that allow to construct distributed sys-
tems with such characteristics (these systems are sometimes called real-time
systems). Many issues are open, and, except for specific environments, it is
not possible or even desirable to emulate a synchronous system model. The
reasons why it is not possible are clear: in many systems, e.g., on the Internet,
there are periods where messages can take days to arrive to their destination.
The reason why it is not desirable is more subtle. One could consider very
large values for the processing, communication, and clock bounds. This how-
ever would mean considering worst cases and the slowest processes and links.
The system would hence perform at the speed of its slowest part.
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What makes the asynchronous model very generic is its simplicity and its
weakness. It is simple because there is no need to manipulate time in the al-
gorithms: such manipulations are usually very error prone. It is weak because
it does not make any timing assumption. Consequently, there is no need to
make strong assumptions on the reliability of the communication either. In
an asynchronous system, since bounded execution is not guaranteed, only
eventual termination needs to be enforced: it is for instance often enough to
ensure that if a message is retransmitted an infinite number of times it is
eventually received by the destination process.

Because of its weakness, several important distributed computing prob-
lems cannot be solved in an asynchronous system model. One seminal paper in
distributed computing (Fischer, Lynch, and Paterson 1985) proved that even
a very simple form of agreement, namely consensus, is impossible to solve
with a deterministic algorithm in an asynchronous environement even if only
one process fails, and it can only do so by crashing. The consequence of this
result is immediate for the impossibility of deriving dependable algorithms for
many agreement abstractions, including group membership or totally ordered
group communication. Additionally, most practical environments can exhibit
some timely behaviour most of the time. This positive aspect, that makes
real systems usable, is not captured by the asynchronous model. In fact, and
as we have discussed, a very desirable feature of synchronous environments,
is that they enable crash failures to be accurately detected using timeouts.
What makes problems like consensus in asynchronous systems impossible, is
precisely that failures cannot be reliably detected, since it is impossible to
distinguish a crashed process from a process that is arbitrarily slow.

A significant amount of research has been devoted to the definition
of intermediate models between the synchronous and the asynchronous
model (C. Dwork and Stockmeyer 1988). The goal is to find whether one
can identify reasonable timing assumptions that, on the one hand, are weak
enough to be practical, and on the other hand, are strong enough to make
interesting distributed computing problems solvable. There are currently two
approaches in this quest.

1. The top-down approach consists in addressing a specific problem (e.g.,
consensus) and trying to define the minimum set of synchrony assump-
tions that needs to be added to an asynchronous model in order to solve
the problem. This approach provides a better insight on the requirements
imposed by the problem. On the other hand, it may happen that the
additional properties may be extremely hard to obtain with acceptable
coverage.

2. The bottom-up approach consists in looking to concrete distributed en-
vironments and identifying additional synchrony assumptions that can
realistically be enforced using the inherent characteristics of such en-
vironments. Based on these assumptions, one identifies what classes of
problems can be solved.
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In the following section, we give an example of the bottom-up approach.

Eventual Timing Assumptions. Generally, distributed environments are
most of the time completely synchronous. There are however periods where
the synchronous assumptions do not hold, e.g., periods where the network is
overloaded, or some process has a shortage of memory that slows it down.
One way to capture the practical fact that most of the time systems are
synchronous is to assume that the timing assumptions only hold eventually
(without precising when exactly). That is, we assume that there is a time after
which these assumptions hold, but this time is not known. In a way, instead
of assuming a synchronous system, we assume a system that is eventually
synchronous.

In fact, the timing assumption properties do not need to hold forever after
a certain time, they only need to hold long enough for the algorithm of interest
to terminate. In order not to bound the assumptions to a given algorithm,
we simply assume that they hold forever after some time. Interestingly, in
such a partially synchronous model, one can provide some information about
failures that makes many problems (such as consensus) solvable. In fact, we
can encapsulate the information about failures we can obtain in such models
within an eventually perfect failure detector module.

Eventually Perfect Failure Detection. Basically, this module guarantees
that there is a time after which crashes can be accurately detected. Again,
this captures the intuition that, most of the time, timeouts can be adjusted
such that so they can accuraterly detect crashes.

To implement an eventually perfect failure detector module, the idea is
to use a timeout, and to suspect processes that have timed-out. Obviously, a
suspicion might be wrong here. A process p might suspect a process ¢ even
if ¢ has not crashed simply because the timeout chosen by p to suspect the
crash of ¢, was too short. In this case, p’s suspicion is false. When p receives
a message from ¢, and it will if p and ¢ are correct because we assume
reliable channels, p revises its judgment and stops suspecting q. Process p
also increases its timeout with respect to ¢. Clearly, if ¢ now crashes, p will
eventually permanently suspect it. If ¢ does not crash, then there is a time
after which p will stop suspecting ¢, i.e., the timeout of p for ¢ will be large
enough. This is because we assume that there is a time after which the system
is synchronous.

An eventually perfect failure detector can be described by the accu-
racy and completeness properties (PFD1-2),(Chandra and Toueg 1996) of
Mod.2.3.

2.3.4 Indulgence

Algorithms which assume that processes can only fail by crashing and every
process has accurate information about which process has crashed will be
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Module:
Name: Eventually Perfect FailureDetector (OP).
Events:

Indication:
( suspect, p; ): Used to notify that process p; is suspected to have
crashed.
( restore, p; ): Used to notify that process p; is not suspected
anymore.

Properties:

PFD1: Fventual strong completeness: Eventually every process that
crashes is permanently suspected by every correct process.

PFD2: Eventual Strong accuracy: Eventually, no correct process is sus-
pected by any correct process.

Module 2.3 Interface and properties of the eventually perfect failured detector.

called fail-stop algorithms, following the terminology of (Schneider, Gries,
and Schlichting 1984).

Algorithms that do not make any failure detection assumption at all,
or those which rely only on eventually perfect failure detectors are called
indulgent algorithms, following the terminology of (Guerraoui 2000). These
algorithms are indulgent towards their failure detector: they forgive its mis-
takes. With these algorithms, no process can ever know if any other process
has crashed or not. Without any failure detection assumption, indulgence
is obvious. With an eventually perfect failure detector, processes know that
they will eventually suspect crashed processes and that they will eventually
stop suspecting correct processes. They do not know when their suspicions
will become accurate. Hence, at any point in time, no process knows if any
other process has crashed or not.

Indulgent algorithms tolerate asynchronous periods of the system where
process relative speeds and communication delays are unbounded. They also
inherently tolerate temporary partitions. We discuss some interesting prop-
erties of indulgent algorithms for various agreement abstractions.
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Exercises

1. When can we say that a model where any process can crash and recover
and a model where any process can commit omission failures are similar?

2. Which property of a perfect failure detector is a liveness property?

3. Does the following statement satisfy the synchronous processing assump-
tion: “on my server, no request ever takes more than one week to be pro-
cessed”?

4. Consider any indulgent algorithm A that solves a problem M. Can A
violate the safety property of M if the system turns out to be completely
asynchronous?

5. Give a problem M and an indulgent algorithm A solving M, such that the
liveness of M is violated if the system turns out to be asynchronous.

6. Can we build a perfect failure detector (to detect crashes) if we cannot
bound the number of omission faults? What if processes that can commit
omission failures commit a limited and known number of such failures and
then crash?

7. Using a perfect failure detector, can we determine a priori a time pe-
riod, such that, whenever a process crashes, all correct processes suspect this
process to have crashed after this period?

Corrections

1. When processes crash, they lose the content of their volatile memory and
they commit omissions. If we assume (1) that processes do have stable storage
and store every update on their state within the stable storage, and (2) that
they are not aware thay have crashed and recovered, then the two models are
similar.

2. The strong completeness is a liveness property. Strong accuracy is a safety
property.

3. Yes. This is because the time it takes for the process (i.e. the server) to
process a request is bounded and known: it is one week.

4. No. Assume by contradiction that A violates the safety property of M
if the system turns out to be completely asynchronous. Because of the very
nature of a safety property, there is a time ¢ and an execution R of the system
such that the property is violated at ¢ in R. Assume now that the properties
of the eventually perfect failure detector hold after ¢ in a run R’ that is similar
to R up to time t. A would violate the safety property of M in R’, even if the
failure detector is eventually perfect (the system is not asynchronous).
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5. The problem is simply that of building an eventually perfect failure de-
tector.

6. No. There is no way to accurately detect the crash of a process that com-
mits an unbounded number of omission failures. The only way to see if a pro-
cess is up is through the messages it sends. If the process commits a bounded
number of omission failures and this bound is known in a synchronous sys-
tem, we can use it to calibrate the time-out of the processes to accurately
detect failures. If the time exceeds the maximum time during which a process
can commit omission failures without having actually crashed, it can safely
detect the process to have crashed.

7. No. The perfect failure detector only ensures that processes that crash are
eventually detected: there is no bound on the time it takes for these crashes
to be detected.
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3. Reliable Broadcast

The man thinks. The dog thinks. The fish does not think. Because the fish
knows. (G. Bregovic)

This chapter covers the specifications of a typical form of agreement ab-
stractions: broadcast. Roughly speaking, these abstractions ensure that the
processes agree on the set of messages they deliver. We study here four vari-
ants of such abstractions: best-effort broadcast, reqular reliable broadcast, uni-
form reliable broadcast and causal broadcast. We do so in a distributed system
model where communication channels are reliable but processes can fail by
crashing.

3.1 Intuition

3.1.1 Client-Server Computing

In traditional distributed applications, interactions are often established be-
tween two processes. Probably the most representative of this sort of inter-
action is the now classic client-server scheme. According to this model, a
server process exports an interface to several clients. Clients use the inter-
face by sending a request to the server and by later collecting a reply. Such
interaction is supported by point-to-point communication protocols. It is ex-
tremely useful for the application if such a protocol is reliable. Reliability
in this context usually means that, under some assumptions (which are by
the way often not completely understood by most system designers), mes-
sages exchanged between the two processes are not lost or duplicated, and
are delivered in the order in which they were sent. Typical implementations
of this abstraction are reliable transport protocols such as TCP. By using a
reliable point-to-point communication protocol, the application is free from
dealing explicitly with issues such as acknowledgments, timeouts, message



re-transmissions, flow-control and a number of other issues that become en-
capsulated by the protocol interface. The programmer can focus on the actual
functionality of the application.

3.1.2 Multi-tier Systems

As distributed applications become bigger and more complex, interactions
are no longer limited to bilateral relationships. There are many cases where
more than two processes need to operate in a coordinated manner. Consider,
for instance, a multi-user virtual environment where several users interact in
a virtual space. These users may be located at different physical locations,
and they can either directly interact by exchanging multimedia information,
or indirectly by modifying the environment.

It is convenient to rely here on broadcast abstractions. These allow a pro-
cess to send a message within a group of processes, and make sure that the
processes agree on the messages they deliver. A naive transposition of the
reliability requirement from point-to-point protocols would require that no
message sent to the group would be lost or duplicated, i.e., the processes
agree to deliver every message broadcast to them. However, the definition
of agreement for a broadcast primitive is not a simple task. The existence
of multiple senders and multiple recipients in a group introduces degrees of
freedom that are very limited in point-to-point communication. Consider for
instance the case where the sender of a message fails by crashing. It may
happen that some recipients deliver the last message while others do not.
This may lead to an inconsistent view of the system state by different group
members. Roughly speaking, broadcast abstractions provide reliability guar-
antees ranging from best-effort, that only ensures delivery among all correct
processes if the sender does not fail, through reliable that, in addition, ensures
all-or-nothing delivery semantics even if the sender fails, to totally ordered
that furthermore ensures that the delivery of messages follow the same global
order (we shall consider other forms of broadcast abstractions later in this
manuscript).

3.2 Best-Effort Broadcast

A broadcast abstraction enables a process to send a message, in a one-shot
operation, to all the processes in a system, including itself. We give here the
specification and algorithm for a broadcast communication primitive with a
weak form of reliability, called best-effort broadcast.

3.2.1 Specification

With best-effort broadcast, the burden of ensuring reliability is put only on
the sender. Therefore, the remaining processes do not have to be concerned
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Module:
Name: BestEffortBroadcast (beb).
Events:

Request: ( bebBroadcast, m ): Used to broadcast message m to all pro-
cesses.

Indication: ( bebDeliver, src, m ): Used to deliver message m broadcast
by process src.

Properties:

BEB1: Best-effort validity: If p; and p; are correct, then every message
broadcast by p; is eventually delivered by p;.

BEB2: No duplication: No message is delivered more than once.

BEBS3: No creation: If a message m is delivered by some process p;, then
m was previously broadcast by some process p;.

Module 3.1 Interface and properties of best-effort broadcast.

with enforcing the reliability of received messages. Nevertheless, no guaran-
tees are offered in case the sender fails. More precisely, best-effort broadcast
is characterized by the properties BEB1-3 depicted in Mod. 3.1. Note that
broadcast messages are implicitly addressed to all processes.

3.2.2 Algorithm

To provide best effort broadcast on top of perfect links is quite simple. It
suffices to send a copy of the message to every process in the system, as
illustrated in Fig. 3.1. The code of the algorithm is given in Alg. 3.1. As
long as the sender of the message is correct, the properties of perfect links
ensure that all correct processes will deliver the message. Note however that,
if the sender crashes during a transmission, it may send a message to some
processes but not to others. Actually, even if the process sends a message to
all processes before crashing, the delivery is not ensured because perfect links
do not enforce delivery when the sender fails.

Correctness. The properties are trivially derived from the properties of per-
fect point-to-point links. No duplication and no creation are safety properties
that are derived from PL2 and PL3. Validity is a liveness property that is
derived from PL1 and from the fact that the sender sends the message to
every other process in the system.

Performance. The algorithm requires a single communication step and ex-
changes (N — 1) messages (we do not count loopback messages).
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Figure 3.1. Sample execution of best-effort broadcast using perfect links.

Algorithm 3.1 Best-effort broadcast using perfect links.

Implements:
BestEffortBroadcast (beb).

Uses:
perfectPoint ToPointLinks (pp2p).

upon event ( bebBroadcast, m ) do
forall p; € IT do
trigger ( pp2pSend, p;, m );

upon event ( pp2pDeliver, p;,m ) do
trigger ( bebDeliver, p;, m );

3.3 Regular Reliable Broadcast

Best-effort broadcast ensures the delivery of messages as long as the sender
does not fail. If the sender fails, the processes might disagree on whether or
not to deliver the message. We now consider the case where agreement is en-
sured even if the sender fails. We do so by introducing a broadcast abstraction
with a stronger form of reliability, called (regular) reliable broadcast.

3.3.1 Specifications

Intuitively, the semantics of a reliable broadcast algorithm ensure that correct
processes agree on the set of messages they deliver, even when the senders
of these messages crash during the transmission. It should be noted that a
sender may crash before being able to transmit the message, case in which
no process will deliver it. The specification is given in Mod. 3.2.

3.3.2 An Optimistic Reliable Broadcast Algorithm

To implement regular reliable broadcast, we make use of the best-effort ab-
straction described in the previous section as well as the perfect failure de-
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Module:
Name: (regular) ReliableBroadcast (rb).
Events:

Request: ( rbBroadcast, m ): Used to broadcast message m.

Indication: ( rbDeliver, src,m ): Used to deliver message m broadcast by
process src.

Properties:

RB1: Validity: If a correct process p; broadcasts a message m, then p;
eventually delivers m.

RB2: No duplication: No message is delivered more than once.

RB3: No creation: If a message m is delivered by some process pj, then
m was previously broadcast by some process p;.

RB4: Agreement: If a message m is delivered by some correct process p;,
then m is eventually delivered by every correct process p;.

Module 3.2 Interface and properties of reliable broadcast.

tector module introduced earlier in the manuscript. We give an algorithm in
Alg. 3.2.

To broadcast (rbBroadcast) a message, a process uses the best-effort
broadcast primitive to disseminate the message to all, i.e., it bebBroadcasts
the message. A process that gets the message (i.e., bebDelivers the message)
delivers it immediately (i.e., rbDelivers it). If the sender does not crash, then
the message will be delivered by all correct processes. The problem is that the
sender might crash. In this case, the process that delivers the message from
some other process can detect that crash and relays the message to all. Our
algorithm is optimistic in the sense that it favors the case where the sender
does not crash.

Correctness. The no creation (resp. validity) property of our reliable broad-
cast algorithm follows from no creation (resp. validity) property of the under-
lying best effort broadcast primitive. The no duplication property of reliable
broadcast follows from our use of a variable delivered that keeps track of the
messages that have been rbDelivered at every process. Agreement follows here
from the walidity property of the underlying best effort broadcast primitive,
from the fact that every process relays every message it rbDelivers when it
suspects the sender, and from the use of a perfect failure detector.

Performance. If the initial sender does not crash, to rbDeliver a message to
all processes, the algorithm requires a single communication step and N — 1
messages. Otherwise, at the worst case, if the processes crash in sequence,
N — 1 steps and (N — 1)? messages are required to terminate the algorithm.
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Algorithm 3.2 Optimistic reliable broadcast.

Implements:
ReliableBroadcast (rb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (p).

upon event ( Init ) do
delivered := 0;
correct := II;
Vp,em : from[p;] := 0;

upon event ( rbBroadcast, m ) do
delivered := delivered U {m}
trigger ( rbDeliver, self, m );
trigger ( bebBroadcast, [DATA, self, m] );

upon event ( bebDeliver, p;, [DATA, Sm, m] ) do
if m ¢ delivered then
delivered := delivered U {m}
trigger ( rbDeliver, Sm,m );
from[p;] := from[p;] U {m}
if p; & correct then
trigger ( bebBroadcast, [DATA, Sm, m] );

upon event ( crash, p; ) do
correct := correct \ {p;}
Vmefrom[pi]: do
trigger ( bebBroadcast, [DATA, Sm, m] );

3.3.3 A Pessimistic Reliable Broadcast Algorithm

In the previous algorithm, we basically make use of the completeness property
of the failure detector to ensure agreement. If the failure detector does not
ensure accuracy, then the processes might be relaying messages when it is
not really necessary.

In fact, we can circumvent the need for a completeness property as well
by adopting a pessimistic scheme: every process that gets a message relays
it immediately. That is, we consider the worst case where the sender process
might have crashed and we relay every message. This relaying phase is exactly
what guarantees the agreement property of reliable broadcast.

Our pessimistic algorithm, given in Alg. 3.3, makes use only of the best-
effort primitive described in the previous section.

In Fig. 3.2a we illustrate how the algorithm ensures agreement event if
the sender crashes: process p; crashes and its message is not bebDelivered
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Algorithm 3.3 Pessimistic reliable broadcast.

Implements:
ReliableBroadcast (rb).

Uses:
BestEffortBroadcast (beb).

upon event ( Init ) do
delivered := (;

upon event ( rbBroadcast, m ) do
delivered := delivered U {m}
trigger ( rbDeliver, self, m );
trigger ( bebBroadcast, [DATA, self, m] );

upon event ( bebDeliver, p;, [DATA, $m, m] ) do
if m ¢ delivered do
delivered := delivered U {m}
trigger ( rbDeliver, $m,m );
trigger ( bebBroadcast, [DATA, Sm, m] );

by ps and ps. However, since ps retransmits the message (bebBroadcasts it),
the remaining processes also bebDeliver it and then rbDeliver it. In our first
algorithm (the optimistic one), pa will be relaying the message only after it
has detected the crash of p;.

rbBroadcagt,  rbDeliver

rbBroadcast  rbDeliver

P2
rbDeliver

Ps

rbDeliver 2
(a) (b)

Figure 3.2. Sample executions of pessimistic reliable broadcast.

Correctness. All properties, except agreement, are ensured as in the previous
reliable broadcast algorithm. The agreement property follows from the valid-
ity property of the underlying best effort broadcast primitive and from the
fact that every process relays every message it rbDelivers.

29



Module:
Name: UniformReliableBroadcast (urb).
Events:

( urbBroadcast, m ), { urbDeliver, src,m ), with the same meaning and
interface as in regular reliable broadcast.

Properties:
RB1-RB3: Same as in regular reliable broadcast.
URB4: Uniform Agreement: If a message m is delivered by some process

pi (whether correct or faulty), then m is also eventually delivered by every
other correct process p;.

Module 3.3 Interface and properties of uniform reliable broadcast.

Performance. In the best case, to rbDeliver a message to all processes, the
algorithm requires a single communication step and (N — 1)2 messages. In
the worst case, if processes crash in sequence, N steps and (N — 1)? messages
are required to terminate the algorithm.

3.4 Uniform Reliable Broadcast

3.4.1 Specifications

Uniform reliable broadcast differs from reliable broadcast by the formulation
of its agreement property. The specification is given in Mod. 3.3.

With regular reliable broadcast, the semantics just require correct pro-
cesses to deliver the same information, regardless of what messages have been
delivered by faulty processes. The uniform definition is stronger in the sense
that it guarantees that the set of messages delivered by faulty processes is
always a sub-set of the messages delivered by correct processes.

Uniformity is typically important if processes might interact with the
external world, e.g., print something on a screen or trigger the delivery of
money through an ATM. In this case, the fact that a process has delivered
a message is important, even if the process has crashed afterwards. This is
because the process could have communicated with the external world after
having delivered the message. The processes that remain alive in the system
should also be aware of that message having been delivered.

Fig. 3.2b shows why our reliable broadcast algorithms do not ensure uni-
formity. Both process p; aNd ps rbDeliver the message as soon as they beb-
Deliver it, but crash before relaying the message to the remaining processes.
Still, processes ps and py are consistent among themselves (none of them have
rbDelivered the message).
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Algorithm 3.4 Uniform reliable broadcast.

Implements:
UniformReliableBroadcast (urb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).

upon event ( Init ) do
delivered := forward := (;
correct := II;
acky = 0, Vm;

upon event ( urbBroadcast, m ) do
forward := forward U {m}
trigger ( bebBroadcast, [DATA, self, m] );

upon event ( bebDeliver, p;, [DATA, Sm, m] ) do
ackm = ackm U {p:i}
if m ¢ forward do
forward := forward U {m};
trigger ( bebBroadcast, [DATA, Sm, m] );

upon event ( crash, p; ) do
correct := correct \{p:};

upon (correct C ackm) A (m ¢ delivered) do
delivered := delivered U {m};
trigger ( urbDeliver, $pm,m );

3.4.2 A Uniform Reliable Broadcast Algorithm

Basically, our previous algorithms do not ensure uniform agreement because
a process may rbDeliver a message and then crash: even if it has relayed
its message to all (through a bebBroadcast primitive), the message might
not reach any of the remaining processes. Note that even if we considered
the same algorithms and replaced the best-effort broadcast with a reliable
broadcast, they would still not implement a uniform broadcast abstraction.

We give an algorithm that implements the uniform version of reliable
broadcast in Alg. 3.4. Basically, in this algorithm, a process only delivers
a message when it knows that the message has been seen by all correct
processes. As in our pessimistic reliable broadcast algorithm, all processes
relay the message once they have seen it. Each process keeps a record of
which processes have already retransmitted a given message. When all correct
processes retransmitted the message, all correct processes are guaranteed to
deliver the message, as illustrated in Fig. 3.4.

Correctness. As before, except for uniform agreement, all properties are triv-
ially derived from the properties of the best-effort broadcast. Uniform agree-
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rbBroadcast,

P1
rbDeliver
P2 u
/drbDeliver
P3
§% rbDeliver
P4

Figure 3.3. Sample execution of uniform reliable broadcast.

ment is ensured by having each process wait to urbDeliver a message until
all correct processes have bebDelivered the message. We rely here on the use
of a perfect failure detector.

Performance. In the best case the algorithm requires two communication
steps to deliver the message to all processes. In the worst case, if processes
crash in sequence, N + 1 steps are required to terminate the algorithm. The
algorithm exchanges (IV — 1)? messages in each step. Therefore, uniform reli-
able broadcast requires one more step to deliver the messages than its regular
counterpart.

3.4.3 An Indulgent Uniform Reliable Broadcast Algorithm

The previous algorithm is not correct if the failure detector is not perfect.
Uniform agreement would be violated if strong accuracy is not satisfied and
validity would be violated if strong completeness is not satifsied.

We give in the following a uniform reliable broadcast algorithm that does
not rely on a perfect failure detector but assumes a majority of correct pro-
cesses. In the example above, this means that at most one out of three pro-
cesses can crash in any given execution. The algorithm is given in Alg. 3.5.
It is similar to the previous uniform reliable broadcast algorithm except that
processes do not wait until all correct processes have seen a message, but
until a majority has seen the message.

Correctness. The no-duplication and no-creation properties follow from the
properties of best effort broadcast. Validity follows from the validity of the
best effort broadcast primitive and the assumption of a correct majority.
Uniform agreement is ensured because any two majorities intersect.

Performance. Similar to the previous algorithm.

3.5 Causal Order Broadcast

So far, we did not consider any ordering guarantee among messages delivered
by different processes. In this section, we discuss the issue of ensuring delivery
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Algorithm 3.5 Indulgent uniform reliable broadcast.

Implements:
UniformReliableBroadcast (urb).

Uses:
BestEffortBroadcast (beb).

upon event ( Init ) do
delivered := forward := ();
acky, = 0, Vm;

upon event ( urbBroadcast, m ) do
forward := forward U {m}
trigger ( bebBroadcast, [DATA, self, m] );

upon event ( bebDeliver, p;, [DATA, $m, m] ) do
acky, := acky U {p:}
if m ¢ forward do
forward := forward U {m};
trigger ( bebBroadcast, [DATA, Sm, m] );

upon (#ackm > N/2) A (m & delivered) do
delivered := delivered U {m};
trigger ( urbDeliver, $m,m );

rbBroadcast
Y4
rbDeliver
p2 u
/fbDeliver
ps
§% rbDeliver
P4

Figure 3.4. Sample execution of uniform reliable broadcast.

according to causal ordering. This is a generalization of FIFO (first-in-first-
out ordering where messages from the same process should be delivered in

the order according to which they were broadcast.

3.5.1 Specifications

As the name indicates, a causal order protocol ensures that messages are
delivered respecting cause-effect relations, expressed by the happened-before
relation introduced by Lamport (Lamport 1978). This relation, called the
causal order relation, when applied to the messages exchanged among pro-
cesses, can be written in terms of broadcast and delivery events. In this case,
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Module:
Name: CausalOrder (co).
Events:

Request: ( coBroadcast, m ): Used to broadcast message m to I1.

Indication: ( coDeliver, src, m ): Used to deliver message m broadcast by
process src.

Properties:

CB: Causal delivery: If some process p; delivers a message ms and there
is a message mi such that m; — ma, then m; is delivered by p; before
ma.

Module 3.4 Properties of causal broadcast.

we say that a message mi may potentially have caused another message mao
(or my happened before ms), denoted as m; — myg if the following relation,
applies:

e m; and msy were broadcast by the same process p and m; was broadcast
before my (Fig. 3.5a).

e mj was delivered by process p and mso was broadcast also by process p and
mz was broadcast after the delivery of m; (Fig. 3.5b).

e there exists some message m’ such that m; — m’ and m’ — ma(Fig. 3.5¢).

my my my
m J2 Ty D

my
my |

P2 P2 \/ P2 ‘\ m,/

Ps P3 \:\\ D3 \ \

(a) (b) (c)

/
Jn.

Figure 3.5. Causal order of messages.

Using the causal order relation, a causal order broadcast can be defined by
the property CB in Mod. 3.4. The property states that messages are delivered
by the protocol according to the causal order relation. There must be no
“holes” in the causal past, i.e., when a message is delivered, all preceding
messages have already been delivered.

Before describing our algorithm, we give a simple example of the practi-
cal advantage of a causal order primitive. Consider the case of a distributed
message board that manages two types of messages: proposals and comments
to previous proposals. To make the interface user-friendly, comments are de-
picted attached to the proposal they referring to. Assume that we implement

34



Module:
Name: ReliableCausalOrder (rco).
Events:

( rcoBroadcast, m ) and { rcoDeliver, src, m ): with the same meaning and
interface as the causal order interface.

Properties:

RB1-RB3, URBA4, from reliable broadcast and and CB from causal order
broadcast.

Module 3.5 Properties of reliable causal broadcast.

Module:
Name: UniformReliableCausalOrder (urco).
Events:

( urcoBroadcast, m ) and ( urcoDeliver, src, m ): with the same meaning
and interface as the causal order interface.

Properties:
URB1-URB4 and CB, from uniform reliable broadcast and causal order.

Module 3.6 Properties of uniform reliable causal broadcast.

the application by replicating all the information at all participants. This
can be achieved through the use of a reliable broadcast primitive to dissem-
inate both proposals and comments. Without causal ordering, the following
sequence would be possible: participant p; broadcasts a message mi contain-
ing a new proposal; participant ps delivers m; and disseminates a comment
in message mo; due to message delays, another participant ps delivers ms
before m. In this case, the application at p3 would be forced to log ms and
wait for mq, to avoid presenting the comment before the proposal being com-
mented. Since m; — ms, a causal order primitive would make sure that m;
would have been delivered before ms, relieving the application programmer
of such a task.

It is also worth noting that causal order can be combined with both
reliable broadcast and uniform reliable broadcast. These combinations would
have the interface and properties of Mod. 3.5 and Mod. 3.6, respectively.

In the following, we present algorithms that implement causal broadcast.
The algorithms assume that all messages are broadcast to all group mem-
bers. It is also possible to ensure causal delivery in the cases where individual
messages may be sent to an arbitrary subset of group members, but the algo-
rithms require a significantly larger amount of control information (Raynal,
Schiper, and Toueg 1991).

35



Algorithm 3.6 Non-blocking reliable causal broadcast.

Implements:
ReliableCausalOrder (rco).

Uses:
ReliableBroadcast (rb).

upon event ( Init ) do
delivered := (;
past := ()

upon event ( rcoBroadcast, m ) do
trigger ( rbBroadcast, [DATA, past, m] );
past := past U { [self,m] };

upon event ( rbDeliver, p;, [DATA, pastm, m] ) do
if m ¢ delivered then
forall [sn,n] € past, do //in order
if n ¢ delivered then

trigger ( rcoDeliver, sn,n );
delivered := delivered U {n}
past := past U {[sn,n]};

trigger ( rcoDeliver, p;,m );

delivered := delivered U {m}

past := past U {[p;, m]};

3.5.2 A Non-Blocking Algorithm

The first algorithm we present is a reliable causal broadcast algorithm. It is
inspired by one of the earliest implementations of causal ordering, included in
the ISIS toolkit (Birman and Joseph 1987). The algorithm uses an underlying
reliable broadcast communication primitive defined through rbBroadcast and
rbDeliver primitives. The same algorithm could be used to implement a uni-
form reliable causal broadcast primitive, simply by replacing the underlying
reliable broadcast module by a uniform reliable broadcast module.

The algorithm is said to be non-blocking in the following sense: whenever a
process rbDeliver a message m, it can rcoDeliver m without waiting for other
messages to be rbDelivered. Each message m carries a control field called
past,,. The past,, field of a message m includes all messages that causally
precede m. When a message m is rbDelivered, pasty, is first inspected: mes-
sages in past,, that have not been rcoDelivered must be rcoDelivered before
m itself is also rcoDelivered. In order to record its own causal past, each
process p memorizes all the messages it has rcoBroadcast or rcoDelivered in
a local variable past,. Note that past, (and past,,) are ordered sets. The
algorithm is depicted in Alg. 3.6.

The biggest advantage of this algorithm is that the delivery of a message
is never delayed in order to enforce causal order. This is illustrated in Fig. 3.6.
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Consider for instance process ps and message msy. Process py rbDelivers meo.
Since mo carries my in its past, m; and mo are delivered in order. Finally,
when m is rbDelivered from p1, it is discarded.

rcoBroadcast (m1)

N R
P rcoDeliver (m5)

X\

rcoDeliver (my)

Figure 3.6. Sample execution of causal broadcast with complete past.

There is a clear inconvenience however: the past,, field may become ex-
tremely large, since it includes the complete causal past of m. In the next
subsection we illustrate a simple scheme to reduce the size of past. However,
even with this optimization, this approach consumes too much bandwidth to
be used in practice. Note also that no effort is made to prevent the size of
the delivered set from growing indefinitely.

Correctness. All properties of reliable broadcast follow from the use of an
underlying reliable broadcast primitive and the non-blocking flavour of the
algorithm. The causal order property is enforced by having every message
carry its causal past and every process making sure that it rcoDelivers the
causal past of a message before rcoDelivering the message.

Performance. The algorithm does not add additional communication steps
or messages to the underlying uniform reliable boradcast protocols. However,
the size of the messages grows linearly with time, unless some companion
garbage collection algorithm to purge past is executed.

3.5.3 Garbage Collection

We now present a very simple algorithm to delete messages from the past set.
The algorithm is aimed to be used in conjonction with Alg. 3.6. It works as
follows: when a process delivers a message, it rbBroadcasts an Ack message
to all other processes; when an Ack for message m has been rbDelivered from
all correct processes, m is purged from past. The pseudo-code of the algorithm
is presented in Alg. 3.7.
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Algorithm 3.7 Garbage collection of past.

Implements:
GarbageCollectionOfPast.
(extends Alg. 3.6).

Uses:
ReliableBroadcast (rb).
PerfectFailureDetector (P);

upon event ( Init ) do
delivered := past := 0;
correct := II;
acky, = 0, Vm;

upon event ( crash, p; ) do
correct := correct \{p;};

upon I, € delivered: self ¢ ack,, do
acky, = ackmy U { self };
trigger ( rbBroadcast, [ACK, m] );

upon event ( rbDeliver, p;, [ACK, m| ) do
ackm := ackm U {p:};
if correct C ack,,do
past := past \{[sm, m]};

3.5.4 A Blocking Algorithm

We now present an alternative algorithm that circumvents the main limi-
tation of the previous algorithm: the huge size of the messages. Instead of
keeping a record of all past messages, we keep just the sequence number of
the last message rcoBroadcast. In this way, past,, is reduced to an array of in-
tegers. Temporal information stored in this way is known as a vector clock ().
The algorithm uses an underlying reliable broadcast communication primi-
tive defined through rbBroadcast and rbDeliver primitives. The algorithm is
depicted in Alg. 3.8.

With this algorithm, messages do not carry the complete past, only a
summary of the past in the form of the vector clock. It is possible that a
message may be prevented from being rcoDelivered immediately when it is
rbDelivered, because some of the preceding messages have not been rbDeliv-
ered yet. It is also possible that the rbDelivery of a single message triggers
the rcoDelivery of several messages that were waiting to be rcoDelivered. For
instance, in Fig. 3.7 message my is rbDelivered at py before message m1, but
its rcoDelivery is delayed until m; is rbDelivered and rcoDelivered.

As with the non-blocking variant, this algorithm could also be used to
implement uniform reliable causal broadcast, simply by replacing the under-
lying reliable broadcast module by a uniform reliable broadcast module.

38



Algorithm 3.8 Blocking causal broadcast.

Implements:
ReliableCausalOrder (rco).

Uses:
ReliableBroadcast (rb).

upon event ( init ) do
Vp,em 2 VCps] :== 0;

upon event ( rcoBroadcast, m ) do
VClself] := VC]self]+1;
trigger ( rbBroadcast, [DATA, self, VC, m] );

upon event ( rbDeliver, p;, [DATA, $m, VCm, m] ) do
wait until (VC[sm] > VCn[sm] — 1) and (Vp,2s,, : VCOnlps] < VClp;])
trigger ( rcoDeliver, Sm, m );
if s, # self then
VClself] := VClself]+1;

rcoBroadcast (m1)

AN
rcoDeliver (ms)
rcoDeliver (my)

Figure 3.7. Sample execution of causal broadcast with vector clocks.

Performance. The algorithm does not add any additional communication
steps or messages to the underlying reliable boradcast algorithm. The size of
the message header is linear with regard to the number of processes in the
system.
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Exercises

1. Modify the optimistic reliable broadcast algorithm to reduce the number
of messages sent in case of failures.

2. The algorithms presented continuously fill their different buffers without
emptying them. Modify them to remove unnecessary messages from the fol-
lowing buffers:

1. from[p;] in the optimistic reliable broadcast algorithm
2. delivered in all reliable broadcast algorithms
3. forward in the uniform reliable broadcast algorithm

3. What do we gain if we replace bebBroadcast with rbBroadcast in the uni-
form reliable broadcast algorithm?

4. What happens in the reliable broadcast and the uniform broadcast algo-
rithms if the following properties of the failure detector are violated:

1. accuracy
2. completeness

5. Our uniform reliable broadcast algorithm using a perfect failure detector
can be viewed as an extension of our pessimistic reliable broadcast algorithm.
Would we gain anything by devising a uniform reliable broadcast algorithm
that would be an extension of our optimistic reliable algorithm? i.e., can we
have the processes not relay messages unless they suspect the sender.

6. Explain, say for a system of three processes, why our uniform reliable
broadcast algorithm using a perfect failure detector would be incorrect if the
failure detector turns out not to be perfect?

7. Can we devise a uniform reliable broadcast with an eventually perfect fail-
ure detector but without the assumption of a correct majority of processes?

8. Compare our causal broadcast property with the following property: “If a
process delivers messages my and mso, and my — me, then the process must
deliver my before mo”.

9. Does it make sense to have a causal order primitive that is best effort but
not reliable?

10. Suggest a blocking and a non-blocking algorithm that ensure only FIFO
delivery (i.e. causality is restricted to messages from the same process).

11. Suggest a modification of the garbage collection scheme to collect mes-
sages sooner in Algorithm 1.
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Corrections

1. In our optimistic reliable broadcast algorithm, if a process p rbBroadcasts
a message and then crashes, N? messages are relayed by the remaining pro-
cesses to retransmit the message of process p. This is because a process that
bebDelivers the message of p does not know whether the other processes have
bebDelivered this message or not. However, it would be sufficient in this case
if only one process, for example process ¢, relays the message of p.

In practice one specific process, call it leader process p;, might be more
likely to bebDeliver messages: the links to and from this process are fast and
very reliable, the process runs on a reliable computer, etc. A process p; would
forward its messages to the leader p;, which coordinates the broadcast to every
other process. If the leader is correct, everyone eventually bebDelivers and
rbDelivers every message. Otherwise, we revert to the previous algorithm,
and every process is responsible for bebBroadcasting the messages that it
bebDelivers.

2. From from/[p;] in the optimistic reliable broadcast algorithm: The array
from is used exclusively to store messages that are retransmitted in the
case of a failure. Therefore they can be removed as soon as they have been
retransmitted. If p; is correct, they will eventually be bebDelivered. If p; is
faulty, it does not matter if the other processes do not bebDeliver them.

From delivered in all reliable broadcast algorithms: Messages cannot be
removed. If a process crashes and its messages are retransmitted by two
different processes, then a process might rbDeliver the same message twice
if it empties the deliver buffer in the meantime. This would violate the no
duplication safety property.

From forward in the uniform reliable broadcast algorithm: Messages can
actually be removed as soon as they have been urbDelivered.

3. Nothing, because the uniform reliable broadcast algorithm does not as-
sume and hence does not use the guarantees provided by the reliable broad-
cast algorithm.

Consider the following scenario which illustrates the difference between
using bebBroadcast and using rbBroadcast. A process p broadcasts a message
and crashes. Consider the case where only one correct process g receives the
message (bebBroadcast). With rbBroadcast, all correct processes would deliver
the message. In the urbBroadcast algorithm, ¢ adds the message in forward
and then bebBroadcasts it. As ¢ is correct, all correct processes will deliver
it, and thus, we have at least the same guarantee as with rbBroadcast.

4. If the accuracy, i.e. the safety property, of the failure detector is violated,
the safety property(ies) of the problem considered might be violated. In the
case of (uniform) reliable broadcast, the agreement property can be violated.

If the completeness, i.e. the liveness property of the failure detector, is
violated, the liveness property(ies) of the problem considered might be vio-
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lated. In the case of (uniform) reliable broadcast, the validity property can
be violated.

5. The advantage of the optimistic scheme is that processes do not need to
relay messages to ensure agreement if they do not suspect the sender to have
crashed. In this failure-free scenario, only N — 1 messages are needed for all
the processes to deliver a message. In the case of uniform reliable broadcast
(without a majority), a process can only deliver a message when it knows
that every correct process has seen that message. Hence, every process should
somehow convey that fact, i.e., that it has seen the message. An optimistic
scheme would be of no benefit here.

6. Consider our uniform reliable broadcast algorithm using a perfect failure
detector and a system of three processes: p1, p2 and p3. Assume furthermore
that p; urbBroadcasts a message m. If strong completeness is not satisfied,
then p; might never urbDeliver m if any of p» or ps crash and p; never
suspects them or bebDelivers m from them: p; would wait indefinitely for
them to relay the message. Assume now that strong accuracy is violated
and p; falsely suspects po and ps to have crashed. Process p; eventually
urbDelivers m. Assume that p; crashes afterwards. It might be the case that
p2 and p3 never bebDelivered m and have no way of knowing about m and
urbDeliver it: uniform agreement would be violated.

7. No. We explain why for the case of a system of four processes {p1, p2, p3, p4}
using what is called a partitioning argument. The fact that the correct ma-
jority assumption does not hold means that 2 out of the 4 processes may fail.
Consider an execution where process p; broadcasts a message m and assume
that p3 and py4 crash in that execution without receiving any message neither
from p; nor from po. By the validity property of uniform reliable broadcast,
there must be a time ¢ at which p; urbDelivers message m. Consider now an
execution that is similar to this one except that p; and ps crash right after
time ¢ whereas ps and py4 are correct: say they have been falsely suspected,
which is possible with an eventually perfect failure detector. In this execu-
tion, p1 has urbDelivered a message m whereas p3 and ps have no way of
knowing about that message m and eventually urbDelivering it: agreement
is violated.

8. We have the two following causal properties:

1. If a process delivers a message ms, then it must have delivered every
message m1 such that m; — mao.

2. If a process delivers messages m, and ms, and m; — ma, then the process
must deliver m; before ms.

Property 1 says that any message m; that causally precedes ms must only
be delivered before msy if mo is delivered. Property 2 says that any delivered
message my that causally precedes mo must only be delivered before my if
my is delivered.
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Both properties are safety properties (because if a process does not receive
a message ma (Property 1) or messages m1 and ma (Property 2), it does not
violate anything). The first property is clearly stronger than the second. If
the first is satisfied then the second is. However, it can be the case with the
second property that a process delivers a message mo without delivering a
message mi that causally preceedes my.

9. No. Assume that we have a causal order broadcast that is not reliable
but best effort. We define this abstraction with primitives: coBroadcast and
coDeliver. Consider for instance the case where a process coBroadcasts a
message m and crashes, and only one correct process p coDelivers m. If p then
coBroadcasts a message m’ such that m — m’, then every correct process
must coDeliver m’. To respect causal ordering, no process should coDeliver
m’ before m: a contradiction. Hence, any best-effort causal order broadcast
is also reliable.

10. For a non-blocking algorithm that only ensures FIFO delivery among the
messages of the same process, it is enough if each process sends along with
each message all the messages it sent in the past. A process that receives
such a message starts by delivering messages of that process from the past
that it has not received yet, before delivering the new message.

For a blocking algorithm that only ensures FIFO delivery among the
messages of the same process, it is enough if each process sends along with
each message the number of messages that it has previously sent. A process
receiving such a message waits to have delivered that many messages from
the first process before delivering the new message.

11. When removing a message m from the past, we can also remove all the
messages that causally depend on this message—and then recursively those
that causally precedethese. This means that a message stored in the past
must be stored with its own, distinct past.
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4. Consensus

Life is what happens to you while you are making other plans.
(John Lennon)

This chapter considers the consensus abstraction. The processes use this
abstraction to individually propose an initial value and eventually agree on a
common final value among one of these initial values. We give specifications
of this abstraction and algorithms that implement these specifications. We do
so in a distributed system model where communication channels are reliable
but processes can fail by crashing.

We show later in the chapter how consensus can be used to build a strong
form of reliable broadcast: total order broadcast. Later in the manuscript,
we will use the consensus abstractions to build more sophisticated forms of
agreements.

4.1 Regular Consensus

4.2 Specifications

Consensus (sometimes we say regular consensus) is specified in terms of two
primitives: propose and decide. Each process has an initial value that it pro-
poses to the others (through the primitive propose). (Note that the act of
proposing is local and typically triggers broadcast events.) All correct pro-
cesses have to decide on a single value (through the primitive decide) that
has to be one of the proposed values. Consensus must satisfy the properties
C1-4 listed in Mod. 4.1.

In the following, we present two different algorithms to implement con-
sensus. Both algorithms use a perfect failure detector module.



Module:
Name: (regular) Consensus (c).
Events:

Request: ( cPropose, v ): Used to propose a value for consensus.

Indication: ( cDecide, v ): Used to indicate the decided value for consen-
sus.

Properties:

C1: Termination: Every correct process eventually decides some value.
C2: Validity: If a process decides v, then v was proposed by some process.
C3: Integrity: No process decides twice.

C4: Agreement: No two correct processes decide differently.

Module 4.1 Interface and properties of consensus.

4.2.1 A Flooding Algorithm

The first algorithm is presented in Alg. 4.1. Besides a perfect failure detector,
it uses a best effort broadcast and a reliable broadcast abstractions. The basic
idea is the following. The processes follow sequential rounds. Each process
keeps a set, of proposed values that it augments when moving from a round to
the next (and new proposed values are known). In each round, each process
disseminates its own set to all processes using a best effort broadcast, i.e.,
it floods the system with all proposals it has seen. When a process gets a
proposal set from another process, it merges this set with its own. Basically,
in each round every process tries to make a global union of all proposal sets.

A round terminates when a set has been included from every process
that has not been suspected in that round. Consensus is reached when all
processes have the same set of proposed values. In a round where a new
failure is detected, a process p; is not sure of having exactly the same set of
values as the other processes. This happens because the crashed process(es)
may have broadcast some values to the other processes but not to p;. Note
that this issue is not specifically related to the use of a best-effort broadcast.

In order to know when it is safe to decide, each process keeps a record of
how many processes were not suspected in the previous round and from how
many processes it has got an input in the current round. If a round terminates
with the same number of non-suspected processes as in the previous round,
a decision can be made. The process applies some deterministic function to
the set of accumulated values. In our case, it picks the minimum value and
decides it. Then it disseminates the decision to all processes using a reliable
broadcast.

An execution of the algorithm is illustrated in Fig. 4.1. Process p; crashes
during the first round after broadcasting its proposal. Only p- sees that pro-
posal. No other process crashes. Therefore, ps sees the proposals of all pro-
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Algorithm 4.1 A flooding consensus algorithm.

Implements:
Consensus (c);

Uses:
BestEffortBroadcast (beb);
ReliableBroadcast (rb).
PerfectFailureDetector (P);

upon event ( Init ) do
correct := correct-last-round := IT;
proposal-set := correct-this-round := (J;
decided := L;
round := 1;

upon event ( crash, p; ) do
correct := correct \{p; };

upon event ( cPropose, v ) do
proposal-set := {v};
trigger ( bebBroadcast, [MYSET, round, proposal-set] );

upon event ( bebDeliver, p;, [MYSET, round, set] ) do
correct-this-round := correct-this-round U {p;};
proposal-set := proposal-set U set;

upon correct C correct-this-round do
if correct-this-round = correct-last-round then
trigger ( rbBroadcast, [DECIDED, min (proposal-set)] );
else
correct-last-round := correct-this-round;
correct-this-round := (;
round := round +1;
trigger ( bebBroadcast, [MYSET, round, proposal-set] );

upon event ( rbDeliver, p;, [DECIDED, v] ) A (decided = L) do
decided := v;
trigger ( cDecided, v );

cesses and may decide. It takes the min of the proposals and decides the value
3. Processes p3 and p4 detect the failure and cannot decide. So they advance
to the next round. Note that if these processes took min of the proposals
they had after round 1, they would decide differently. Since p2 has decided,
it disseminates its decision through a reliable broadcast. When the decision
is delivered, processes p3 and p4 also decide 3.

Correctness. Validity and integrity follow from the algorithm and the prop-
erties of the communication abstractions. Termination follows from the fact
that at round N at the latest, all processes that did not decide decide. Agree-
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Figure 4.1. Sample execution of the flooding consensus algorithm.

ment is ensured because the min function is deterministic and is applied by
all correct processes on the same set.

Performance. If there are no failures, the algorithm requires a single commu-
nication step. Each failure may cause at most one additional communication
step (therefore, in the worst case the algorithm requires N steps, if N — 1
processes crash in sequence). If there are no failures, the algorithm exchanges
N? messages plus N messages for the reliable broadcast, for a grand total of
(N 4 1)N messages. There is an additional N? message exchanges for each
round where a process crashes.

4.2.2 A Hierarchical Algorithm

We give here an alternative algorithm for regular consensus. The algorithm
is interesting because it uses less messages and enables one process to decide
before exchanging any message with the rest of the processes (0-latency).
However, to reach a global decision, where all processes decide, the algorithm
requires N communication steps. This algorithm is particularly useful if con-
sensus is used as a service implemented by a set of server processes where
the clients are happy with one value, as long as this value is returned very
rapidly.

The algorithm is given in Alg. 4.2. It makes use of the fact that processes
can be ranked according to their identity and this rank is used to totally
order them a priori, i.e., p1 > p2 > p3 > .. > pn. In short, the algorithm
ensures that the correct process with the highest rank, i.e., the highest in the
hierarchy, imposes its value on all the other processes. Basically, if p; does
not crash, then it will impose its value to all: all correct processes will decide
the value proposed by pi. If p; crashes initially and ps is correct, then the
algorithm ensures that ps’s proposal will be decided. A tricky issue that the
algorithm handles is the case where p; is faulty but does not initially crash
and p, is correct.

The algorithm works in rounds and uses a best effort broadcast abstrac-
tion. In the kth round, process p; decides its proposal, and broadcasts it to
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all processes: all other processes in this round wait to deliver the message
of pr or to suspect pr. None of these processes broadcast any message in
this round. When a process pj delivers in round ¢ < k the proposal of p;, px
adopts this proposal as its own new proposal.

Consider the example depicted in Fig. 4.2. Process p; broadcasts its pro-
posal to all processes and crashes. Process ps and ps3 detect the crash before
they deliver the proposal of p; and advance to the next round. Process py
delivers the value of p; and changes its own proposal accordingly. In round 2,
process pa broadcasts its own proposal. This causes py to change its proposal
again. From this point on, there are no further failures and the processes
decide in sequence the same value.

round 1 . round2 , round 3, round 4
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Figure 4.2. Sample execution of hierarchical consensus.

Correctness:. The wvalidity and integrity properties follow from the algorithm
and the use of an underlying best effort broadcast abstraction. Termination
follows from the perfect failure detection assumption and the validity prop-
erty of best effort broadcast: no process will remain indefinitely blocked in a
round and every correct process p; will eventually reach round ¢ and decide
in that round. Concerning agreement, assume the correct process p; with the
highest rank decides a value v. By the algorithm, every process p; such that
j > i decides v: no process will suspect p; and every process will adopt p;’s
decision.

Performance. The algorithm exchanges (N — 1) messages in each round and
can clearly be optimized such that it exchanges only N(N — 1)/2: a pro-
cess does not need to send a message to processes with a higher rank. The
algorithm also requires N communication steps to terminate.

4.3 Uniform Consensus

4.3.1 Specification

As with reliable broadcast, we can define both regular and uniform variants
of consensus. The uniform specification is presented in Mod. 4.2: correct pro-
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Algorithm 4.2 A hierarchical consensus algorithm.

Implements:
Consensus (c);

Uses:
BestEffortBroadcast (beb);
PerfectFailureDetector (P);

upon event ( Init ) do
suspected := 0;
round := 1;
proposal := nil;
for i =1 to N do pset[i] := ps;
for i =1 to N do delivered[round] := false;

upon event ( crash, p; ) do
suspected := suspected U{p;};

upon event ( cPropose, v ) do
proposal := v;

upon (pset[round] = self) A (proposal # nil) do
trigger ( cDecided, proposal );
trigger ( bebBroadcast, proposal );

upon (pset[round] € suspected) V (delivered[round] = true) do
round := round + 1;

upon event ( bebDeliver, pset[round],value ) do
if self.id > round then
proposal := value;
delivered[round)] := true;

cesses decide a value that must be consistent with values decided by crashed
processes.

None of the consensus algorithms presented so far ensure uniform agree-
ment. Roughly speaking, this is because some of the processes decide too
early: without making sure that their decision has been seen by enough pro-
cesses. Should they crash, other processes might have no choice but to decide
something different.

In the following, we present two different algorithms to solve uniform
consensus: each algorithm can be viewed as a uniform variant of one of our
regular consensus algorithms above.
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Module:
Name: UniformConsensus (uc).
Events:

( ucPropose, v ), { ucDecide, v ): with the same meaning and interface of
the consensus interface.

Properties:

C1-C3: from consensus.

C4’: Uniform Agreement: no two processes decide differently..

Module 4.2 Interface and properties of uniform consensus.

4.3.2 A Flooding Uniform Consensus Algorithm

We give our first uniform consensus algorithm in Alg. 4.3. The processes
follow sequential rounds. As in our first consensus algorithm, each process
gathers a set, of proposals that it has seen and disseminates its own set to all
processes using a best effort broadcast. An important difference here is that
processes wait for round N before deciding.

Correctness:. Validity and integrity follow from the algorithm and the proper-
ties of best-effort broadcast. Termination is ensured here because all correct
processes decide after round N. Uniform agreement is ensured because all
processes that reach round N have the same set of values.

Performance. The algorithm requires N communication steps and N x (N —
1)? messages for all correct processes to decide.

4.3.3 A Hierarchical Uniform Consensus Algorithm

We give here an alternative algorithm that implements uniform consensus.
The algorithm is depicted in Alg. 4.4. It is round-based and is similar to our
second regular consensus algorithm. It is also hierarchical. It uses both a best-
effort broadcast abstraction to exchange messages and a reliable broadcast
abstraction to disseminate a decision.

Every round has a leader: process p; is leader of round i. Unlike our
hierarchical regular consensus algorithm, however, a round here consists of
two communication steps: within the same round, the leader broadcasts a
message to all, trying to impose its value, and then expects to get an ac-
knowledgement from all. Processes that get a proposal from the coordinator
of the round adopt this proposal as their own and send an acknowledgement
back to the leader of the round. If it succeeds to collect an acknowledgement
from all correct processes, the leader decides and disseminates the decided
value using a reliable broadcast abstraction.

If the leader of a round fails, the correct processes detect this and change
round. The leader is consequently changed. Processes in our algorithm do not
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Algorithm 4.3 A flooding uniform consensus algorithm.

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P);

upon event ( Init ) do
correct := II;
round = 1;
for i =1 to N do set[i] := delivered[i] := 0;
proposal-set := (;
decided := false;

upon event ( crash, p; ) do
correct := correct \{p:};

upon event ( ucPropose, v ) do
proposal-set := {v};
trigger ( bebBroadcast, [MYSET, round, proposal-set] );

upon event ( bebDeliver, p;, [MYSET, round, newSet] } A (p; € correct) do
set[round] := set[round] U newSet;
delivered[round] := delivered[round] U{p;};

upon (correct C delivered[round]) A (decided = false) do

if round = N then
decided := true;
trigger ( ucDecided, min(proposal-set) );

else
proposal-set := proposal-set U set[round];
round := round + 1;
trigger ( bebBroadcast, [MYSET, round, proposal-set] );

move sequentially from one round to another: they might jump to a higher
round if they get a message from that higher round.

An execution of the algorithm is illustrated in Fig. 4.3. Process p; imposes
its value to all processes and receives an acknowledgment back from every
process. Therefore, it can decide immediately. However, it crashes before
disseminating the decision using the reliable broadcast. Its failure is detected
by the remaining processes that, in consequence, move to the next round.
The next leader, po will in turn impose its proposal, which is now that of p;:
remember that ps has adopted the proposal of p;. Since there are no further
failures, process p2 gets an acknowledgment from the remaining processes
and disseminates the decision using a reliable broadcast.

Correctness:. Validity and integrity follow trivially from the algorithm and
the properties of the underlying communication abstractions. Consider termi-
nation. If some correct process decides, it decides through the reliable broad-
cast abstraction, i.e., by rbDelivering a decision message. By the properties
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Algorithm 4.4 A hierarchical uniform consensus algorithm.

Uses:
PerfectPoint ToPointLinks (pp2p);
ReliableBroadcast (rb).
BestEffortBroadcast (rb).
PerfectFailureDetector (P);

upon event ( Init ) do
proposal := decided := 1;
round := 1;
suspected := ack-set := (;
for i =1 to N do pset[i] := p;;

upon event ( crash, p; ) do
suspected := suspected U{p;};

upon event ( ucPropose, v ) do
proposal := v;

upon (pset[round] = self) A (proposed # L) A (decided = L) do
trigger ( bebBroadcast, [PROPOSE, round, proposal] );

upon event ( bebDeliver, p;, [PROPOSE, round, v] ) do
proposal := v;
trigger ( pp2pSend, p;, [ACK, Ack,round] );
round := round +1;

upon event (psetround] € suspected) do
round := round +1;

upon event ( pp2pDeliver, p;, [ACK] ) do
ack-set := ack-set U{p;};

upon event (ack-set U suspected = II) do
trigger ( rbBroadcast, [DECIDED, proposal| );

upon event ( rbDeliver, p;, [DECIDED, v] ) A (decided = 1)do
decided := v;
trigger ( ucDecide, v );

of this broadcast abstraction, every correct process rbDelivers the decision
message and decides. Hence, either all correct processes decide or no correct
process decides. Assume by contradiction that there is at least one correct
process and no correct process decides. Let p; be the correct process with
the highest rank. By the completeness property of the perfect failure detec-
tor, every correct process suspects the processes with higher ranks than ¢ (or
bebDelivers their message). Hence, all correct processes reach round i and,
by the accuracy property of the failure detector, no process suspects process
p; or moves to a higher round, i.e., all correct processes wait until a message
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Figure 4.3. Sample execution of hierarchical uniform consensus.

from p; is bebDelivered. In this round, process p; hence succeeds in imposing
a decision and decides. Consider now agreement and assume by contradic-
tion that two processes decide differently. This can only be possible if two
processes rbBroadcast two decision messages with two different propositions.
Consider any two processes p; and p;, such that j is the closest integer to ¢
such that j > ¢ and p; and p; proposed two different decision values v and v/,
i.e., rbBroadcast v and v’. Because p; is correct and because of the accuracy
property of the failure detector, process p; must have adopted v before reach-
ing round j. Given that j is the closest integer to i such that some process
proposed v’ different from v, after v was proposed, we have a contradiction.

Performance. If there are no failures, the algorithm terminates in 3 commu-
nication steps: 2 steps for the first round and 1 step for the reliable broadcast.
It exchanges 3(IN — 1) messages. Each failure of a leader adds 2 additional
communication steps and 2(NN — 1) additional messages.

4.4 Indulgent Consensus Algorithms

So far, the consensus and uniform consensus algorithms we have given rely
on the assumption of a perfect failure detector. It is easy to see that in any
of those algorithms, a false failure suspicion might lead to violation of the
agreement property (exercice at the end of this chapter). That is, if a process
is suspected to have crashed whereas the process is correct, agreement would
be violated and two processes might decide differently. In other words, the
consensus algorithms we have considered so far are not indulgent. In the
following, we give two uniform consensus algorithms that rely only on the
assumption of an eventually perfect failure detector. The algorithms can be
viewed as indulgent variants of our second uniform consensus algorithm.
Our algorithms implement the uniform variant of consensus and rely on
the assumption of a correct majority of processes. We leave it as exercices
to show that any indulgent consensus algorithm that solves consensus solves
uniform consensus (Chandra and Toueg 1996), and no indulgent algorithm
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can solve consensus without a correct majority of processes (Chandra and
Toueg 1996; Guerraoui 2000).

4.4.1 The Traffic Light Consensus Algorithm

Our first algorithm is from (Chandra and Toueg 1996): it is given in Alg. 4.5.
The algorithm is round-based and every process goes sequentially from round
i to round 7 + 1. Every round has a leader: the leader of round i is process
Di mod N+1; €-8., p2 is the leader of rounds 2, N + 2, 2N + 2, etc. Besides
an eventually perfect failure detector, the algorithm uses a best-effort and a
reliable broadcast communication abstractions.

We call this algorithm the traffic light consensus algorithm because the
processes behave as cars in a cross-road controlled by a traffic light. Crossing
the road in our context means deciding on a consensus value and having the
chance to cross the road in our context means being leader of the current
round. If two cars try to cross the road at the same time, none of them might
succeed. If it does not cross the road, the car has to wait until all others are
given their chance too. The guarantee that there eventually will only be one
green light conveys the fact that only eventually, some correct process is not
suspected and will hence be the only leader.

The process that is leader in a round computes a new proposal and tries
to impose that proposal to all: every process that gets the proposal from the
current leader adopts this proposal and assigns it the current round number
as a timestamp. Then it acknowledges that proposal back to the leader. If
the leader gets a majority of acknowledgements, it decides and disseminates
that decision using a reliable broadcast abstraction. More precisely, a round
consists a priori (i.e., if the leader is not suspected) of five phases.

1. Computation. The leader first computes its current proposal. All pro-
cesses send their current proposal to the leader which selects the pro-
posal with the highest timestamp. The leader starts the selection process
after it has received the current proposal from at least a majority of the
processes.

2. Adoption. The leader broadcasts its current proposal to all. Any process
that gets that proposal adopts it and assigns it the current round number
as a timestamp.

3. Acknowledgment. Every process that adopts a value from the leader sends
an acknowledgement message back to the leader.

4. Decision. If the leader gets a majority of acknowledgement messages, it
decides its proposal and uses a reliable broadcast primitive to disseminate
the decision to all.

5. Global decision. Any process that delivers a decision message decides.

In every round, there is a critical point where processes need the input of
their failure detector model. When the processes are waiting for a proposal
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from the leader of that round, the processes should not wait indefinitely if the
leader has crashed without having broadcast its proposal. In this case, the
processes consult their failure detector module to get a hint as to whether the
leader process has crashed. Given that an eventually perfect detector ensures
that, eventually, every crashed process is suspected by every correct process,
the process that is waiting for a crashed leader will eventually suspect it and
send a specific message nack to the leader, then move to the next round. In
fact, a leader that is waiting for acknowledgements might get some nacks: in
this case it moves to the next round without deciding.

Note also that processes after acknowledging a proposal move to the next
round directly: they do not need to wait for a decision. They might deliver it
in an asynchronous way: through the reliable broadcast dissemination phase.
In that case, they will simply stop their algorithm.

Correctness:. Validity and integrity follow from the algorithm and the prop-
erties of the underlying communication abstractions. Consider termination.
If some correct process decides, it decides through the reliable broadcast ab-
straction, i.e., by bebDelivering a decision message. By the properties of this
broadcast abstraction, every correct process rbDelivers the decision message
and decides. Assume by contradiction that there is at least one correct pro-
cess and no correct process decides. Consider the time ¢ after which all faulty
processes crashed, all faulty processes are suspected by every correct process
forever and no correct process is ever suspected. Let p; be the first correct
process that is leader after time ¢ and let r denote the round at which that
process is leader. If no process has decided, then all correct processes reach
round r and p; eventually reaches a decision and rbBroadcasts that decision.
Consider now agreement. Consider by contradition any two rounds ¢ and j,
J is the closest integer to ¢ such that j > ¢ and p; mod N+1, and P;j mod N+1,
proposed two different decision values v and v’. Process p; mod n+1 must
have adopted v before reaching round j. This is because p; moq n+1 selects
the value with the highest timestamp and p; mod N+1 cannot miss the value
of Pi mod N41: any two majorities always intersect. Given that j is the closest
integer to ¢ such that some process proposed v’ different from v, after v was
proposed, we have a contradiction.

Performance:. If no process fails or is suspected to have failed, then 4 com-
munication steps and 4(N — 1) messages are needed for all correct processes
to decide.

4.4.2 The Round-About Consensus Algorithm

Our second algorithm is from (Lamport 1989): it is given in Alg. 4.6. We call
this algorithm the round-about consensus algorithm because the processes
behave as cars in a cross-road controlled by a round-about.

Unlike in the previous indulgent consensus algorithm, if a process does
not succeed in crossing the road, it might try again immediately and does not
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need to wait for all other processes to have had their chance to cross the road.
In fact, the first to go on the round-about might succeed if no other process
goes on the round-about. Basically, a process that goes on the round-about
is the one that believes it is leader. The guarantee that there will be only
one process on the round-about follows from the eventually perfect failure
detector guarantee.

The algorithm is round-based but, unlike the previous algorithm, pro-
cesses do not go sequentially from round i to round i + 1. The leader of
round ¢ is process p; mod N+1: if it is the process among those that are not
suspected with the highest rank, i.e., p; if no process is suspected. Besides
an eventually perfect failure detector, the algorithm uses a best-effort and a
reliable broadcast communication abstractions.

Like in the previous indulgent consensus algorithm, the process that is
leader in a round computes a new proposal based on the timestamps of the
estimates of the processes. The leader then tries to impose that proposal to
all: every process that gets the proposal from the current leader, and that
is not engaged in a higher round, adopts this proposal and assigns it as a
timestamp the current round number. It then ackowledges that proposal back
to the leader. If the process was engaged in a higher round or suspects the
leader, it sends a nack message to the leader. If the leader gets a majority of
acknowledgements, it decides and disseminates that decision using a reliable
broadcast abstraction.

Correctness. Similar to that of the traffic light indulgent consensus algorithm.

Performance. If no process fails or is suspected to have failed, then 5 com-
munication steps and 5(N — 1) messages are needed for all correct processes
to decide.

4.5 Total Order Broadcast

A total order broadcast abstraction is a reliable broadcast abstraction which
ensures that all processes deliver the same set of messages exactly in the same
order. This abstraction is sometimes also called atomic broadcast because the
message delivery occurs as an indivisible operation: the message is delivered
to all or to none of the processes and, if it is delivered, other messages are
ordered before or after this message.

This sort of ordering eases the maintenance of a global consistent state. In
particular, if each participant is programmed as a state machine, i.e., its state
at a given point depends exclusively of the initial state and of the sequence of
messages received, the use of total order broadcast ensures consistent repli-
cated behavior. The replicated state machine is one of the fundamental tech-
niques to achieve fault-tolerance.

Note that total order is orthogonal to the causal order discussed in
Sec. 3.5. It is possible to have a total-order abstraction that does not respects
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causal order, as well as it is possible to overlay a total order abstraction on
top of a causal order primitive.

Note that with a causal order primitive, processes deliver messages accord-
ing to cause-effect relations. Messages that are not related by causal order
are said to be concurrent messages. A causal order abstraction that does
not enforce total order may deliver concurrent messages in different order to
different processes.

4.5.1 Specification

T'wo variants of the abstraction can be defined: A regular variant only ensure
total order among the processes that remain correct; and a uniform variant
that ensures total order with regard to the crashed processes as well. Total
order is captured by the properties TO1 and RB1-4 depicted in Mod. 4.3 and
TO1 and RB1-4 in Mod. 4.4.

Note that the total order property (uniform or not) can be combined with
the properties of a uniform reliable broadcast or those of a causal broadcast
abstraction (for conciseness, we omit to present the interface of these mod-
ules).

4.5.2 A total order broadcast algorithm

In the following, we give a uniform total order broadcast algorithm. More
precisely, the algorithm ensures the properties of uniform reliable broadcast
plus the uniform total order property. The algorithm, inspired by (Chandra
and Toueg 1996), uses a uniform reliable broadcast and a uniform consensus
abstractions as underlying building blocks. In this algorithm, messages are
first disseminated using a uniform (but unordered) reliable broadcast primi-
tive. Messages delivered this way are stored in a bag of unordered messages
at every process. The processes then use the consensus abstraction to order
the messages in this bag.

More precisely, the algorithm works in consecutive rounds. Processes go
sequentially from round ¢ to ¢+ 1: as long as new messages are broadcast, the
processes keep on moving from one round to the other. There is one consensus
instance per round. The consensus instance of a given round is used to make
the processes agree on a set of messages to assign to the sequence number
corresponding to that round: these messages will be delivered in that round.
For instance, the first round decides which messages are assigned sequence
number 1, i.e., which messages are delivered in round 1. The second round
decides which messages are assigned sequence number 2, etc. All messages
that are assigned round number 2 are delivered after the messages assigned
round number 1. Messages with the same sequence number are delivered
according to some deterministic order (e.g., based on message identifiers).
That is, once the processes have agreed on a set of messages for a given
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round, they simply apply a deterministic function to sort the messages of the
same set.

In each instance of the consensus, every process proposes a (potentially
different) set of messages to be ordered. The properties of consensus ensure
that all processes decide the same set of messages for that sequence number.
The total order algorithm is given in Alg.4.7. The wait flag is used to ensure
that a new round is not started before the previous round has terminated.

An execution of the algorithm is illustrated in Fig. 4.4. The figure is
unfolded into two parallel flows: That of the reliable broadcasts, used to
disseminate the messages, and that of the consensus instances, used to order
the messages. As messages are received from the reliable module they are
proposed to the next instance of consensus. For instance, process p4 proposes
message ms to the first instance of consensus. Since the first instance of
consensus decides message mj, process py re-submits my (along with msg
that was received meanwhile) to the second instance of consensus.

uabBroadcast (m)

Reliable Broadcast

uabBroadcast’(ms)

2 Loy ma T ms, My
P2 —— g, my Mo @ mg, my
Consensus i '
ps —— M O ma, M3 — My, My
Pe — i, 4 My, ma ms, My
Round 1 Round 2 Round 3
uabDeliver (m1)  uabDeliver (m2) uabDeliver (mg, my)

Figure 4.4. Sample excution of the uniform atomic broadcast algorithm.

Correctness. The integrity property follows from (1) the integrity property of
the reliable broadcast abstraction and (2) the validity property of consensus.
The no-duplication property follows from (1) the no-duplication property of
the reliable broadcast abstraction, and (2) the integrity property of consen-
sus (more precisely, the use of the variable delivery). Consider the agreement
property. Assume that some correct process p; toDelivers some message m.
By the algorithm, p; must have decided a batch of messages with m inside
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that batch. Every correct process will reach that point, because of the algo-
rithm and the termination property of consensus, will decide that batch, and
will toDeliver m. Consider the validity property of total order broadcast, and
let p; be some correct process that toDelivers a message m. Assume by con-
tradiction that p; never toDelivers m. This means that m is never included in
a batch of messages that some correct process decides. By the validity prop-
erty of reliable broadcast, every correct process will eventually rbDeliver and
propose m in a batch of messages to consensus. By the validity property of
consensus, p; will decide a batch of messages including m and will toDeliver
m. Consider now the total order property. Let p; and p; be any two processes
that toDeliver some message ms. Assume that p; toDelivers some message
my before ma. If p; toDelivers my and my in the same batch (i.e., the same
round number), then by the agreement property of consensus, p; must have
also decided the same batch. Thus, p; must toDeliver m1 before ms since we
assume a deterministic funtion to order the messages for the same batch be-
fore their toDelivery. Assume that m; is from a previous batch at p;. By the
agreement property of consensus, p; must have decided the batch of m; as
well. Given that processes proceed sequentially from one round to the other,
then p; must have toDelivered m; before mo.

Performance. The algorithm requires at least one communication step to ex-
ecute the reliable broadcast and at least two communication steps to execute
the consensus. Therefore, even if no failures occur, at least three communi-
cation steps are required.

Variations. 1t is easy to see that a regular total order broadcast algorithm is
automatically obtained by replacing the uniform consensus abstraction by a
regular one. Similarly, one could obtain a total order broadcast that satisfies
uniform agreement if we used a uniform reliable broadcast abstraction instead
of regular reliable broadcast abstraction. Finally, the algorithm can trivially
be made to ensure in addition causal ordering, for instance if we add past
information with every message (see our non-blocking causal order broadcast
algorithm).
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4.6 Exercices

1. Improve our hierarchical regular consensus algorithm to save one commu-
nication step. (The algorithm requires N communication steps for all correct
processes to decide. By a slight modification, it can run in N —1 steps: suggest
such a modification.)

2. Explain why none of our (regular) consensus algorithms ensures uniform
consensus.

3. Can we optimize our flooding uniform consensus algorithms to save one
communication step, i.e., such that all correct processes always decide after
N — 1 communication steps? Consider the case of a system of two processes.

4. What would happen in our flooding uniform consensus algorithm if:

1. we did not use set[round] but directly update proposedSet in upon
event bebDeliver?
2. we accepted any bebDeliver event, even if p; ¢ correct?

5. Consider our consensus algorithms using a perfect failure detector. Ex-
plain why none of those algorithms would be correct if the failure detector
turns out not to be perfect.

6. Explain why any indulgent algorithm that solves consensus actually solves
uniform consensus.

7. Explain why any indulgent consensus algorithm needs a majority of cor-
rect processes.

8. Suggest improvements of our traffic light and round-about indulgent con-
sensus algorithms such that, if no process fails or is suspected to have failed,
only 3 communication steps and 3(IN — 1) messages are needed for all correct
processes to decide.

9. What happens in our total order broadcast algorithm if the set of messages
decided on are not sorted deterministically after the decision but prior to the
proposal? What happens if in our total order broadcast algorithm if the set
of messages decided on is not sorted deterministically, neither a priori nor a
posteriori?

4.7 Corrections

1. The last process (say, pn) does not need to broadcast its message. Indeed,
the only process that uses py’s broadcast value is py itself, and py anyway
decides its proposal just before it broadcasts it (not when it delivers it).
Clearly, no process ever uses py’s broadcast. More generally, no process p;
ever uses the value broadcast from any process p; such that i > j.
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2. Consider our flooding algorithm first and the scenario of Fig. 4.1: if p;
crashes after deciding 3, po and p3 would decide 5. Now consider our hier-
archical algorithm and the scenario of Fig. 4.2. In the case where p; decides
and crashes and no other process sees p;’s proposal (i.e., 3), then p; would
decide differently from the other processes.

3. No. Rather than giving a general proof, we give a counter example for
the particular case of N = 2. The interested reader will then easily extend
beyond this case to the general case of any N. Consider the system made of
two processes p1 and p2. We exhibit an execution where processes do not reach
uniform agreement after one round, thus they need at least two rounds. More
precisely, consider the execution where p; and ps propose two different values,
that is, v # ve, where v; is the value proposed by p; (i = 1,2). Without loss
of generality, consider that v; < vg. We shall consider the following execution
where p; is a faulty process.

During round 1, p; and ps respectively send their message to each other.
Process py receives its own value and ps’s message (ps is correct), and decides.
Assume that p; decides its own value vy, which is different from p,’s value,
and then crashes. Now, assume that the message p; sent to py in round 1
is arbitrarily delayed (this is possible in an asynchronous system). There is
a time after which ps permanently suspects p; because of the Strong Com-
pleteness property of the perfect failure detector. As ps does not know that
p1 did send a message, pa decides at the end of round 1 on its own value vs.
Hence the violation of uniform agreement.

Note that if we allow processes to decide only after 2 rounds, the above
scenario does not happen, because p; crashes before deciding (i.e. it never
decides), and later on, py decides vs.

4. For case (1), it would not change anything. Intuitively, the algorithm is
correct (more specifically, preserves uniform agreement), because any process
executes for N rounds before deciding. Thus there exists a round r during
which no process crashes. Because at each round, every process broadcasts
the values it knows from the previous rounds, after executing round r, all
processes that are not crashed know exactly the same information. If we now
update proposedSet before the beginning of the next round (and in particular
before the beginning of round ), the processes will still have the information
on time. In conclusion, the fact they get the information earlier is not a
problem since they must execute N rounds anyway.

In case (2), the algorithm is not correct anymore. In the following, we
discuss an execution that leads to disagreement. More precisely, consider the
system made of three processes p1, p2 and ps.

The processes propose 0, 1 and 1, respectively. During the first round,
the messages of p; are delayed and ps and p3 never receive them. Process p;
crashes at the end of round 2, but ps still receives p;’s round 2 message (that
is, 0) in round 2 (possible because channels are not FIFO). Process ps does
not receive pp’s message in round 2 though. In round 3, the message from ps
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to ps (that is, the set {0,1}) is delayed and process po crashes at the end of
round 3, so that ps never receives ps’s message. Before crashing, py decides
on value 0, whereas p3 decides on 1. Hence the disagreement.

5. In all our algorithms using a perfect failure detector, there is at least one
critical point where a correct process p waits to deliver a message from a
process g or to suspect the process ¢q. Should ¢ crash and p never suspect
q, p would remain blocked forever and never decide. In short, in any of our
algorithm using a perfect failure detector, a violation of strong completeness
could lead to violate the termination property of consensus.

Consider now strong accuracy. Consider our flooding algorithm first and
the scenario of Fig. 4.1: if p; crashes after deciding 3, and p; is suspected to
have crashed by p; and p3, then ps and ps would decide 5. The same scenario
can happen for our hierarchical consensus algorithm.

6. Consider any indulgent consensus algorithm that does not solve uniform
consensus. This means that there is an execution scenario where two processes
p and ¢ decide differently and one of them crashes: the algorithm violates uni-
form agreement. Assume that process ¢ crashes. With an eventually perfect
failure detector, it might be the case that ¢ is not crashed but just falsely
suspected by all other processes. Process p would decide the same as in the
previous scenario and the algorithm would violate (non-uniform) agreement.

7. We explain this for the case of a system of four processes {p1, p2, p3, pa}-
Assume by contradiction that there is an indulgent consensus algorithm that
tolerates the crash of two processes. Assume that p; and py propose a value v
whereas p3 and p4 propose a different value v’. Consider a scenario Ey where
p1 and po crash initially: in this scenario, p3 and py decide v’ to respect
the wvalidity property of consensus. Consider also a scenario E, where p3 and
py4 crash initially: in this scenario, p; and ps decide v. With an eventually
perfect failure detector, a third scenario Fs5 is possible: the one where no
process crashes, p; and ps falsely suspect p3 and ps whereas p3 and py4 falsely
suspect p; and ps. In this scenario F3, p1 and ps decide v, just as in scenario
FE1, whereas ps and py decide v’, just as in scenario Fy. Agreement would
hence be violated.

8. The optimization of the traffic light algorithm consists in skipping the
first communication step of the algorithm during the first round. In this case,
process p; does not really need to compute a proposal based on the estimates
of other processes. This computation phase is actually only needed to make
sure that the leader will propose any value that might have been proposed.
For the first round, p; is sure that no decision has been made and can save
one communication phase by directly proposing its own proposal.

A similar optimization can be applied to the round-about algorithm: we
can safely remove the two first communication steps and have process p1,
when it is indeed leader in round 1, go ahead directly and propose its initial
value whitout waiting for other values.
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9. If the deterministic sorting is done prior to the proposal, and not a pos-
teriori upon a decision, the processes would not agree on a set but on a
sequence, i.e., an ordered set. If they then toDeliver the messages according
to this order, we would still ensure the total order property.

If the messages that we agree on through consensus are not sorted deter-
ministically within every batch (neither a priori nor a posteriori), then the
total order property is not ensured. Even if the processes decide on the same
batch of messages, they might toDeliver the messages within this batch in a
different order.

In fact, the total order property would only be ensured up to the batches
of messages, and not to the messages themselves. We thus get a coarser
granularity in the total order.

We could avoid using the deterministic sort function at the cost of propos-
ing a single message at a time in the consensus abstraction. This means that
we would need exactly as many consensus instances as there are messages
exchanged between the processes. If messages are generated very slowly by
processes, the algorithm ends up using one consensus instance per message
anyway. If the messages are generated rapidly, then it is beneficial to use
several messages per instance: within one instance of consensus, several mes-
sages would be gathered, i.e., every message of the consensus algorithm would
concern several messages to toDeliver. Agreeing on several messages at the
same time reduces the number of times we use the consensus protocol.
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Algorithm 4.5 The traffic light consensus algorithm.

Uses:
PerfectPoint ToPointLinks (pp2p);
ReliableBroadcast (rb).
BestEffortBroadcast (beb).
EventuallyPerfectFailureDetector (OP);

upon event ( Init ) do
proposal := decided := 1;

round := 1;
suspected:= estimate-set[] := ack-set[] := @;
estimate[] := ack[| := false;

for i =1 to N do ps[i] := ps;

upon event ( suspect, p; ) do
suspected := suspected U{p;};

upon event ( restore, p; ) do
suspected := suspected \{p; };

upon event ( ucPropose, v ) do
proposal := [v, 0];

upon event (proposal # L) A (estimate[round] = false) do
estimate[round] := true;
trigger ( pp2pSend, ps[round mod N], [ESTIMATE, round, proposal] );

upon event(ps[round mod N + 1]= self) A ( pp2pDeliver, p;, [ESTIMATE, round, estimate| ) do
estimate-set[round] := estimate-set[round] U{estimate};

upon (ps[round mod N + 1]= self) A (#estimate[round] > N/2)) do
proposal := highest(estimate-set[round));
trigger ( bebBroadcast, [PROPOSE, round, proposal| );

upon event ( bebDeliver, p;, [PROPOSE, round, value] ) A (ack[round] = false) do
ack[round] := true;
proposal := [value, round];
trigger ( pp2pSend, ps[round mod N], [ACK, round] );
round := round + 1;

upon event (psfround mod N] € suspected) A (ack[round] = false) do
ack[round] := true;
trigger ( pp2pSend, ps[round mod N], [NACK, round] );
round := round + 1;

upon event(ps[round mod N + 1]= self) A ( pp2pDeliver, p;, [ACK, round] ) do
ack-set[round] := ack-set[round] U{ value };

upon (ps[round mod N + 1]= self) A ( pp2pDeliver, p;, [NACK, round] ) do
round := round + 1;

upon (psround mod N + 1]= self) A (#ack-set[round] > N/2) do
trigger ( rbBroadcast, [DECIDE, proposal] );

upon event ( rbDeliver, p;, [DECIDED, v] ) A (decided = L) do
decided := v; 65
trigger ( ucDecided, v );




Algorithm 4.6 The round-about consensus algorithm.

Uses:
PerfectPoint ToPointLinks (pp2p);
ReliableBroadcast (rb).
BestEffortBroadcast (beb).
EventuallyPerfectFailureDetector (OP);

upon event ( Init ) do
proposal := decided := 1;

estimate-set[] := ack-set[] := 0);
estimate[] := ack[] := false;
round; := rounds := 1;

correct := II;
for i =1 to N do pset[i] := p;

upon event ( suspect, p; ) do
correct := correct \{p; };

upon event ( restore, p; ) do
correct := correct U{p;};

upon event ( ucPropose, v ) do
proposal := v;
fori=1to N do
if pset[i] = self then
round; := ;

upon (highest(correct) = self) A (estimate[round;] = false) A (decided = 1) do
estimate[round;] = true;
trigger ( bebBroadcast, [REQESTIMATE, round,] );

upon event ( pp2pDeliver, p;, [REQESTIMATE, r] ) do
if rounds > r then
trigger ( pp2pSend, p;, [NACK, rounds] );
else
rounds := r;
trigger ( pp2pSend, p;, [ESTIMATE, rounds, proposal] );

upon event ( pp2pDeliver, p;, [NACK, round] ) do
repeat
round; := round: + N;
until (round; > round);

upon event ( pp2pDeliver, p;, [ESTIMATE, round;,value] ) do
estimate-set[round;] := estimate-set[round;] U{value};

upon (highest(correct) = self) A (#estimate[round:] > N/2) do
proposal := highest(estimate-set[round]);
trigger ( bebBroadcast, [PROPOSE, round:, proposal] );

upon event ( pp2pDeliver, p;, [PROPOSE, r, proposal] ) do
if rounds > r then
trigger ( pp2pSend, p;, [NACK, roundz] );
else
rounds :=r;
trigger ( pp2pSend, p;, [ACK,6r60und2] );

upon event (highest(correct) = self) A ( pp2pDeliver, p;, [ACK, round] ) do
ack-set := ack-set U{ value };

upon (highest(correct) = self) A (#ack-set[round] > N/2) do
trigger ( rbBroadcast, [DECIDE, proposal] );

upon event ( rbDeliver, p;, [DECIDED, v] ) A (decided = 1) do
decided := v;
trigger ( ucDecided, v );




Module:
Name: TotalOrder (to).
Events:

Request: ( toBroadcast, m ): Used to broadcast message m to II.

Indication: ( toDeliver, src, m ): Used to deliver message m sent by
process src.

Properties:

TO1: Total order: Let m1 and m2 be any two messages. Let p; and p;
be any two correct processes that deliver ma. If p; delivers m; before msa,
then p; delivers m; before mo.

RB1-RB4: from reliable broadcast.

Module 4.3 Interface and properties of total order broadcast.

Module:
Name: UniformTotalOrder (uto).
Events:

( utoBroadcast, m ), ( utoDeliver, src, m ): with the same meaning and
interface of the consensus interface.

Properties:

UTO1: Uniform total order: Let mi and ma be any two messages. Let p;
and p; be any two processes that deliver ma. If p; delivers m1 before ma,
then p; delivers m1 before mo.

RB1-RB4: from reliable broadcast.

Module 4.4 Interface and properties of uniform total order broadcast.
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Algorithm 4.7 Uniform total order broadcast algorithm.

Implements:
UniformTotalOrderBroadcast (uab);

Uses:
UniformReliableBroadcast (rb).
UniformConsensus (uc);

upon event ( Init ) do
unordered := (;
wait ;= false;
sn = 1;

upon event ( toBroadcast, m ) do
trigger ( rbBroadcast, m );

upon event ( rbDeliver, $;,, m ) do
unordered := unordered U{(sm,m)}

upon (unordered # @) A (— wait) do
wait := true;
trigger ( ucPropose, sn,unordered );

upon event ( ucDecided, sn, decided ) do
unordered := unordered \ decided;
decided := sort (decided); // some deterministic order;
Y(sm,m) € decided: trigger ( toDeliver, sm,m ); //following a deterministic order
sn := sn +1;
wait := false;
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5. Failure-Sensitive Agreement

So when they continued asking him, he lifted up himself, and said unto to
them, he that is without sin among you, let him first cast a stone at her.
(John (not Lennon) 8:7)

This chapter considers failure sensitive agreement abstractions. These ab-
stractions are similar to consensus in that processes need to agree on some
common value. The very characteristic of these abstractions is that the value
decided might depend on whether processes have crashed or not. They are in
this sense failure-sensitive. The impact of this failure-sensitivity is that these
abstractions cannot be implemented with indulgent algorithms. They do not
forget the mistakes of their failure detector.

Examples of such abstractions include terminating reliable broadcast,
(non-blocking) atomic commitment, leader election, and group membership.
We give in the following the specifications of these abstractions as well as al-
gorithms to implement them. We do so in a distributed system model where
communication channels are reliable but processes can fail by crashing. We
shall make use throughout the chapter of a perfect failure detector underlying
module and discuss the non-indulgence of these failure-sensitive abstractions
through the exercices.

5.1 Terminating Reliable Broadcast

5.1.1 Intuition

As its name indicates, terminating reliable broadcast is a form of reliable
broadcast with a termination property.

Consider the case where a given process p; is known to have the obligation
of broadcasting some message to all processes in the system. In other words, p;
is a source of information in the system and all processes must perform some



specific processing according to the message m got from p;. All the remaining
processes are thus waiting for p;’s message. If p; uses a best effort broadcast
and does not crash, then its message will be seen by all correct processes.
Consider now the case where p; crashed and some process p; detects that
p; has crashed without having seen m. Does this means that m was not
broadcast? Not really. It is possible that p; crashed while broadcasting m:
some processes may have received m whereas others have not. Process p;
needs to know whether it should keep on waiting for m, or if it can know at
some point that m will never be delivered by any process.

At this point, one may think that the problem could be avoided if p; had
used a uniform reliable broadcast primitive to broadcast m. Unfortunately,
this is not the case. Consider process p; in the example above. The use of a
uniform reliable broadcast primitive would ensure that, if some other process
pi, delivered m, then p; would eventually deliver m also. However, p; cannot
decide if it should wait for m or not.

The terminating reliable broadcast (TRB) abstraction precisely gives to
p; either the message m or some indication F' that m will not be delivered.
This indication is given in the form of a specific message to the processes: it
is however assumed that the indication is not like any other message, i.e., it
does not belong to the set of possible messages.

5.1.2 Specifications

The properties of this broadcast abstraction are depicted in Mod.5.1. It is
important to notice that the abstraction is defined for a specific originator
process, denoted by src in Mod.5.1.

5.1.3 Algorithm

We now present an algorithm that implements uniform TRB using three
underlying abstractions: a perfect failure detector, a uniform consensus and
a best-effort broadcast. The algorithm is given in Alg. 5.1.

The algorithm works by having the source of the message m disseminate
m to all correct processes using a best-effort broadcast. Every correct process
waits until it gets the message broadcast by the sender process or detects the
crash of the originator process. Then all processes run a consensus to agree
on whether to deliver m or a failure notification. The processes that got m
propose it to consensus and those who detected the crash of the sender, src,
propose F'. The result of the consensus is the value delivered by the TRB
algorithm.

An execution of the algorithm is illustrated in Fig. 5.1. Process p; crashes
while broadcasting m. Therefore p, and p3 get m but py does not. The re-
maining processes use the consensus module to decide which value must be
delivered. In the example of the figure the processes decide to deliver m but
F would be also a possible outcome (since p; has crashed).
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Module:
Name: TerminatingReliableBroadcast (trb).
Events:

Request: ( trbBroadcast, src, m ): Used to initiate a terminating reliable
broadcast for process src.

Indication: ( trbDeliver, src, m ): Used to deliver message m broadcast
by process src (or F in the case src crashes).

Properties:

TRB1: Termination: Every correct process eventually delivers exactly one
message.

TRB2: Validity: If the sender src is correct and broadcasts a message m,
then src eventually delivers m.

TRB3: Integrity: If a correct process delivers a message m then either
m = F or m was previously broadcast by src.

TRBS5: Uniform Agreement: If any process delivers a message m, then
every correct process eventually delivers m.

Module 5.1 Interface and properties of terminating reliable broadcast.

trbBroadcast (p1, m)

X
b1
) ) uniform consensi S
= ucRropose (Qz
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b3 » @
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u(:Proposc\g) trbDeliver (m)
D4 g ® Py
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crash (py) trbDeliver (m)

Figure 5.1. Sample execution of terminating reliable broadcast.

Correctness. The integrity property of best-effort broadcast and the validity
property of consensus ensure that if a process trbDelivers a message m, then
either m is F' or m was trbBroadcast by src. The no-duplication property
of best-effort broadcast and the integrity property of consensus ensure that
no process trbDelivers more than one message. The completeness property
of the failure detector, the validity property of best-effort broadcast and the
termination property of consensus ensure that every correct process eventu-
ally trbDelivers a message. The agreement property of consensus ensures that
of terminating reliable broadcast. Consider now the wvalidity property of ter-
minating reliable broadcast. Consider that src does not crash and trbBroad-
casts a message m # F. By the accuracy property of the failure detector, no
process detects the crash of src. By the validity property of best-effort broad-
cast, every correct, process bebDelivers m and proposes m to consensus. By
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Algorithm 5.1 A uniform terminating reliable broadcast algorithm.

Implements:
TerminatingReliableBroadcast (trb).

Uses:
BestEffortBroadcast (beb).
UniformConsensus (uc);
PerfectFailureDetector (P);

upon event ( Init ) do
proposal := L;
correct = II;

upon event ( crash, p; ) do
correct := correct \{p: };

upon event ( trbBroadcast, src, m ) do
if (src = self) do trigger ( bebBroadcast, m );

upon event ( bebDeliver, p;, m ) do
proposal := m;

upon (src €correct) do
proposal := Fgp¢;

upon (proposal # 1) do
trigger ( ucPropose, proposal );

upon event ( ucDecide, decided ) do
trigger ( trbDeliver, src, decided )

the termination property of consensus, all correct processes, including sre,

eventually decide and trbDeliver a message m.

Performance. The algorithm requires the execution of the consensus abstrac-
tion. In addition to the cost of consensus, the algorithm exchanges N —1 mes-
sages and requires one additional communication step (for the initial best-

effort broadcast).

Variation. Our TRB specification has a uniform agreement property. As for
reliable broadcast, we could specify a regular variant of TRB with a regular
agreement property. By using a regular consensus abstraction instead of uni-
form consensus, we can automatically obtain a regular terminating reliable

broadcast abstraction.
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5.2 Non-blocking Atomic Commit

5.2.1 Intuition

The non-blocking atomic commit (NBAC) abstraction is used to make a set
of processes, each representing a data manager, agree on the outcome of a
transaction. The outcome is either to commit the transaction, say to decide
1, or to abort the transaction, say to decide 0. The outcome depends of the
initial proposals of the processes. Every process proposes an initial vote for
the transaction: 0 or 1. Voting 1 for a process means that the process is
willing and able to commit the transaction.

Typically, by voting 1, a data manager process witnesses the absence of
any problem during the execution of the transaction. Furthermore, the data
manager promises to make the update of the transaction permanent. This in
particular means that the process has stored the temporary update of the
transaction in stable storage: should it crash and recover, it can install a
consistent state including all updates of the committed transaction.

By voting 0, a data manager process vetos the commitment of the trans-
action. Typically, this can occur if the process cannot commit the transaction
for an application-related reason, e.g., not enough money for a bank transfer
in a specific node, for a concurrency control reason, e.g., there is a risk of vi-
olating serialisability in a database system, or a storage reason, e.g., the disk
is full and there is no way to guarantee the persistence of the transaction’s
updates.

At first glance, the problem looks like consensus: the processes propose 0
or 1 and need to decide on a common final value 0 or 1. There is however a
fundamental difference: in consensus, any value decided is valid as long as it
was proposed. In the atomic commitment problem, the decision 1 cannot be
taken if any of the processes had proposed 0. It is indeed a veto right that is
expressed with a 0 vote.

5.2.2 Specifications

NBAC is characterized by the properties listed in Mod.5.2. Without the
termination property, the abstraction is simply called atomic commit (or
atomic commitment). Note that NBAC is inherently uniform. In a distributed
database system for instance, the very fact that some process has decided to
commit a transaction is important, say the process has delivered some cash
through an ATM. Even if that process has crashed, its decision is important
and other processes should reach the same outcome.

5.2.3 Algorithm

We now present an algorithm that solves NBAC using three underlying ab-
stractions: a perfect failure detector, a consensus and a best-effort broadcast.
The algorithm is given in Alg. 5.2.
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Module:
Name: Non-Blocking Atomic Commit (nbac).
Events:

Request: ( nbacPropose, v ): Used to propose a value for the commit (0
or 1).

Indication: ( nbacDecide, v ): Used to indicate the decided value for nbac.

Properties:

NBAC1: Agreement No two processes decide different values.
NBAC2: Integrity No process decides twice.

NBACS3: Abort-Validity 0 can only be decided if some process proposes
0 or crashes.

NBAC4: Commit-Validity 1 can only be decided if no process proposes
0.

NBACS5: Termination Every correct process eventually decides.

Module 5.2 Interfaces and properties of NBAC.

The algorithm works as follows. Every correct process p; broadcasts its
proposal (0 or 1) to all, and waits, for every process pj, either to get the
proposal of p; or to detect the crash of p;. If p; detects the crash of any other
process or gets a proposal 0 from any process, then p; invokes consensus with
0 as its proposal. If p; gets the proposal 1 from all processes, then p; invokes
consensus with 1 as a proposal. Then the processes decide for NBAC the
outcome of consensus.

Correctness. The agreement property of NBAC directly follows from that of
consensus. The no-duplication property of best-effort broadcast and the in-
tegrity property of consensus ensure that no process nbacDecides twice. The
termination property of NBAC follows from the walidity property of best-
effort broadcast, the termination property of consensus, and the complete-
ness property of the failure detector. Consider now the validity properties of
NBAC. The commit-validity property requires that 1 is decided only if all
processes propose 1. Assume by contradiction that some process p; nbacPro-
poses 0 whereas some process p; nbacDecides 1. By the algorithm, for p; to
nbacDecide 1, it must have decided 1, i.e., through the consensus abstraction.
By the wvalidity property of consensus, some process p; must have proposed 1
to the consensus abstraction. By the validity property of best-effort broadcast,
there are two cases to consider: (1) either p; crashes before py bebDelivers p;’s
proposal or (2) pi bebDelivers p;’s proposal. In both cases, by the algorithm,
pr proposes 0 to consensus: a contradiction. Consider now the abort-validity
property of NBAC. This property requires that 0 is decided only if some pro-
cess nbacProposes 0 or crashes. Assume by contradiction that all processes
nbacPropose 1 and no process crashes, whereas some process p; nbacDecides
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Algorithm 5.2 Non-blocking atomic commit.

Implements:
NonBlockingAtomicCommit (nbac).

Uses:
BestEffortBroadcast (beb).
Consensus (uc);
PerfectFailureDetector (P);

upon event ( Init ) do
delivered := (;
correct := II;
proposal := 1;

upon event ( crash, p; ) do
correct := correct \{p; };

upon event ( nbacPropose, v ) do
trigger ( bebBroadcast, v );

upon event ( bebDeliver, p;, v ) do
delivered := delivered U{p;} ;
proposal := proposal * v;

upon (correct \ delivered = (}) do
if correct # IT then
proposal := 0;
trigger ( ucPropose, proposal );

upon event ( ucDecide, decided ) do
trigger ( nbacDecide, decided )

0. For p; to nbacDecide 0, by the validity property of consensus, some process
pr must propose 0. By the algorithm and the accuracy property of the failure
detector, p, would only propose 0 if some process nbacProposes 0 or crashes:
a contradiction.

Performance. The algorithm requires the execution of the consensus abstrac-
tion. In addition to the cost of consensus, the algorithm exchanges N2 mes-
sages and requires one additional communication step (for the initial best-
effort broadcast).

Variation. One could define a non-uniform variant of NBAC, i.e., by requiring
only agreement and not uniform agreement. However, this abstraction would
not be useful in a practical setting to control the termination of a transaction
in a distributed database system. A database server is obviously supposed to
recover after a crash and even communicate the outcome of the transaction
to the outside world before crashing. The very fact that it has committed (or
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Module:
Name: LeaderElection (le).
Events:

Indication: ( leLeader )p;: Used to indicate that process p; is now the
leader.

Properties:

LE1: Either there is no correct process, or some correct process is even-
tually permanently the leader.

LE2: A process p is leader only if all processes in O(p) have crashed.

Module 5.3 Interface and properties of leader election.

aborted) a transaction is important: other processes must nbacDecide the
same value.

5.3 Leader Election

5.3.1 Intuition

The leader election abstraction consists in choosing one process to be selected
as a unique representative of the group of processes in the system. This
abstraction is very useful in a primary-backup replication scheme for instance.
Following this scheme, a set of replica processes coordinate their activities
to provide the illusion of a fault-tolerant service. Among the set of replica
processes, one is chosen as the leader. This leader process, sometimes called
primary, is supposed to treat the requests submitted by the client processes,
on behalf of the other replicas, called backups. Before a leader returns a reply
to a given client, it updates its backups to keep them up to date. If the leader
crashes, one of the backups is elected as the new leader, i.e., the new primary.

5.3.2 Specification

We define the leader election abstraction through the properties given in
Mod.5.3. Processes are totally ordered according to some function O, which
is known to the user of the leader election abstraction, e.g., the clients of
a primary-backup replication scheme. This function O associates to every
process, those that precede it in the ranking. A process can only become
leader if those that precede it have crashed. In a sense, the function represents
the royal ordering in a monarchical system. The prince becomes leader if and
only if the queen dies. If the prince does, may be his little brother is the next
on the list, etc. Typically, we would assume that O(p1) = 0, O(p2) = {p1},
O(ps) = {p1,02}, and so forth. The order in this case is p1; pa; p3; ...
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Algorithm 5.3 Leader election algorithm.

Implements:
LeaderElection (le);

Uses:
PerfectFailureDetector (P);

upon event ( Init ) do
suspected := {;

upon event ( crash, p; ) do
suspected := suspected U{p;};

upon event O(self) C suspected do
trigger ( leLeader, leader );

5.3.3 Algorithm

Correctness. Property LEI follows from the completeness property of the
failure detector whereas property LE2 follows from the accuracy property of
the failure detector.

Performance. The process of becoming a leader is a local operation. The
time to react to a failure and become the new leader depends on the latency
of the failure detector.

5.4 Group Membership

5.4.1 Intuition

In the previous sections, our algorithms were required to make decisions based
on the information about which processes were operational or crashed. This
information is provided by the failure detector module available at each pro-
cess. However, the output of failure detector modules at different processes
is not coordinated. This means that different processes may get notification
of failures of other processes in different orders and, in this way, obtain a dif-
ferent perspective of the system evolution. One of the roles of a membership
service is to provide consistent information about which processes are correct
and which processes have crashed.

Another role of a membership service is to allow new processes to leave
and join the set of processes that are participating in the computation, or
let old processes voluntarily leave this set. As with failure information, the
result of leave and join operations should be provided to correct processes in
a consistent way.
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Module:
Name: Membership (memb).
Events:

Indication: ( membVview, g, V' ) Used to deliver update membership
information in the form of a view. The variable g denotes the group id. A
view V' is a tuple (¢, M), where i is a unique view identifier and M is the
set of processes that belong to the view.

Properties:
Membl: Self inclusion: If a process p installs view V¢ = (i, M;), then
p € M;.
Memb2: Local Monotonicity: If a process p installs view Vi = (4, M)
after installing V* = (i, M;), then j > i.

Memb3: Initial view: Every correct process installs V© = (0, IT).

Memb4: Agreement: If a correct process installs V', then every correct
process also installs V.

Membb: Completeness: If a process p crashes, then eventually every cor-
rect process installs V* = (i, M;) : ¢ & M;.

Memb6: Accuracy: If some process installs a view V' = (i, M;) : ¢ € M;,
then g has crashed.

Module 5.4 Interface and properties of a group membership service.

To simplify the presentation, we will consider here just the case of pro-
cess crashes, i.e., the initial membership of the group is the complete set of
processes and subsequent membership changes are solely caused by crashes.
Hence, we do not consider explicit join and leave operations.

5.4.2 Specifications

We name the set of processes that participate in the computation a group.
The current membership of the group is called a group view. Each view V? =
(i, M;) is a tuple that contains a unique view identifier ¢ and a set of member
processes M. We consider here a linear group membership service, where
all correct processes see the same sequence of views: VY = (0, M), V! =
(1,My),.... As we have noted before, the initial view of all processes V°
includes the complete set of processes IT in the system. A process that delivers
a view V7 is said to install view V. The membership service is characterized
by the properties listed in Mod.5.4.

5.4.3 Algorithm

We now present a group membership algorithm based on consensus and a
perfect failure detector. The algorithm is depicted in Alg. 5.4. At initializa-
tion, each process delivers the initial view with all the processes in the system.
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Algorithm 5.4 Group membership properties.

Uses:
UniformConsensus (uc);
PerfectFailureDetector (P);

upon event ( Init ) do
current-id := 0;
current-membership := II;
next-membership := IT;
current-view := (current-id, current-membership);
wait := false;
trigger ( memView, g, current-view );

upon event ( crash, p; ) do
next-membership := next-membership \{p:};

upon (current-membership # next-membership) A (— wait) do
wait := true;
trigger ( ucPropose, current-id+1, next-membership );

upon event ( ucDecided, id, memb ) do
current-id := id;
current-membership := memb;
next-membership := current-membership N next-membership;
current-view := (current-id, current-membership);
wait := false;
trigger ( membView, g, current-view )

From that point on, the algorithm remains idle until a process is detected to
have crashed. Since different processes may detect crashes in different orders,
a new view is not generated immediately. Instead, a consensus is executed to
decide which processes are to be included in the next view. The wait flag is
used to prevent a process to start a new consensus before the previous con-
sensus terminates. When consensus decides, a new view is delivered and the
current-membership and next-membership are updated. Note that a process
may install a view containing a process that it already knows to be crashed. In
this case it will initiate a new consensus to trigger the installation of another
view.

An execution of the membership algorithm is illustrated in Fig. 5.2. In
the execution both p; and ps crash. Process p3 detects the crash of ps and
initiates the consensus to define a new view. Process p4 detects the crash of p;
and proposes a different view to consensus. As a result of the first consensus,
p1 is excluded from the view. Since p3 has already detected the crash of po,
ps starts a new consensus to exclude p2. Eventually, ps also detects the crash
of po and also participates in the consensus for the third view, that only
includes the correct processes.
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Figure 5.2. Sample execution of the membership algorithm.

Correctness. self inclusion, local monotonicity, and initial view follow from
the algorithm. The agreement property follows from consensus. The complete-
ness property follows from the completeness property of the failure detector
and the accuracy property follows from the accuracy property of the failure
detector.

Performance. The algorithm requires at most one consensus execution for
each process that crashes.
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5.5 Exercices

1. Can we implement TRB with the eventually perfect failure detector OGP
if we assume that at least one process can crash?

2. Do we need the perfect failure detector P to implement TRB (assuming
that any number of processes can crash and every process can trbBroadcast
messages)?

3. Devise two algorithms that, without consensus, implement weaker speci-
fications of NBAC where we replace the termination property with the fol-
lowing ones:

e (1) weak termination: let p; be some process: if p; does not crash then all
correct processes eventually decide;
e (2) very weak termination: if no process crashes, then all processes decide.

4. Can we implement NBAC with the eventually perfect failure detector &GP
if we assume that at least one process can crash? What if we consider a
weaker specification of NBAC where the agreement was not required?

5. Do we need the perfect failure detector P to implement NBAC if we
consider a system where at least two processes can crash but a majority is
correct?

6. Do we need the perfect failure detector P to implement NBAC if we
assume that at most one process can crash?

7. Consider a specification of leader election where we require that (1) there
cannot be two leaders at the same time and (2) either there is no correct pro-
cess, or some correct process is eventually leader. Is this specification sound?
e.g., would it be useful for a primary-backup replication scheme?

8. What is the difference between the specification of leader election given
in the core of the chapter and a specification with the two properties of the
previous exercice and the following property: (3) (stability) a leader remains
leader until it crashes.

9. Do we need the perfect failure detector P to implement leader election?

5.6 Corrections

1. No. Consider TRBy, i.e., the sender is process p;. We discuss below why it
is impossible to implement TRB; with &P if one process can crash. Consider
an execution F; where process p; crashes initially and consider some correct
process p;j. By the termination property of TRB;, there must be a time 7'
at which p; trbDelivers Fj. Consider an execution E» that is similar to Fy
up to time T, except that p; is correct: p;’s messages are delayed until after
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time 7" and the failure detector behaves as in EF; until after time 7". This is
possible because the failure detector is only eventually perfect. Up to time
T, p; cannot distinguish £ from E» and trbDelibevers F;. By the agreement
property of TRB;, p; must trbDeliver F; as well. By the termination property,
p; cannot trbDeliver two messages and will contadict the validity property of
TRB;.

2. Do we need the perfect failure detector to implement TRB if we assume
that any number of processes can crash?

Yes. More precisely, we discuss below that if we have TRB; abstractions,
for every process p;, and if we consider a model where failures cannot be pre-
dicted, then we can emulate a perfect failure detector. This means that the
perfect failure detector is not only sufficient to solve TRB, but also necessary.
The emulation idea is simple. Every process trbBroadcasts a series of mes-
sages to all processes. Every process p; that trbDelivers F;, suspects process
pi.- The strong completeness property would trivially be satisfied. Consider
the strong accuracy property (i.e., no process is suspected before it crashes).
If p; trbDelivers Fj;, then p; is faulty. Given that we consider a model where
failures cannot be predicted, p; must have crashed.

3. The idea of the first algorithm is the following. It uses a perfect failure de-
tector. All processes bebBroadcast their proposal to process p;. This process
would collect the proposals from all that it does not suspect and compute the
decision: 1 if all processes propose 1 and 0 otherwise, i.e., if some process pro-
poses 0 or is suspected to have crashed. Then p; bebBroadcasts the decision
to all and decide. Any process that bebDelivers the message decides accord-
ingly. If p; crashes, then all processes are blocked. Of course, the processes
can figure out the decision by themselves if p; crashes after some correct pro-
cess has decided, or if some correct process decides 0. However, if all correct
processes propose 1 and p; crashes before any correct process, then no correct
process can decide.

This algorithm is also called the Two-Phase Commit (2PC) algorithm. It
implements a variant of atomic commitment that is blocking.

The second algorithm is simpler. All processes bebBroadcast their propos-
als to all. Every process waits from proposals from all. If a process bebDelivers
1 from all it decides 1, otherwise, it decides 0. (This algorithm does not make
use of any failure detector.)

4. No. The reason is similar to that of exercise 1. Consider an execution F4
where all processes are correct and propose 1, except some process p; which
proposes 0 and crashes initially. By the abort-validity property, all correct
processes decide 0. Let T' be the time at which one of these processes, say
pj, decides 0. Consider an execution Fj that is similar to £ except that p;
proposes 1. Process p; cannot distinguish the two executions (because p; did
not send any message) and decides 0 at time 7. Consider now an execution
FE5 that is similar to F5, except that p; is correct but its messages are all
delayed until after time T'. The failure detector behaves in E3 as in Fs: this
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is possible because it is only eventually perfect. In Es, p; decides 0 and
violates commit-validity: all processes are correct and propose 1.

In this argumentation, the agreement property of NBAC was not explic-
itly needed. This shows that even a specification of NBAC where agreement
was not needed could not be implemented with an eventually perfect failure
detector if some process crashes.

5. Do we need the perfect failure detector to implement NBAC if we assume
that a minority of the processes can crash? What if we assume that at most
one process can crash? What if we assume that any number of processes can
crash?

If we assume that a minority of processes can crash, then the perfect
failure detector is not needed. To show that, we exhibit a failure detector
that, in a precise sense, is strictly weaker than the perfect failure detector
and that helps solving NBAC.

The failure detector in question is denoted by 7P, and called the anony-
mously perfect perfect failure detector. This failure detector ensures the strong
completess and eventual strong accuracy of an eventually perfect failure detec-
tor, plus the following anonymous detection property: every correct process
suspects outputs a specific value F' iff some process has crashed.

Given that we assume a majority of correct processes, then the 7P failure
detector solves uniform consensus and we can build a consensus module. Now
we give the idea of an algorithm that uses 7P and a consensus module to solve
NBAC.

The idea of the algorithm is the following. All processes bebBroadcast
their proposal to all. Every process p; waits either (1) to bebDeliver 1 from
all processes, (2) to bebDeliver 0 from some process, or (3) to output F. In
case (1), p; invokes consensus with 1 as a proposed value. In cases (2) and
(3), p; invokes consensus with 0. Then p; decides the value output by the
consensus module.

Now we discuss in which sense 7P is strictly weaker than P. Assume a
system where at least two processes can crash. Consider an execution FEj
where two processes p; and p; crash initially and E» is an execution where
only p; initially crashes. Let p;, be any correct process. Using 7P, at any time
T, process pj can confuse executions F; and Fj if the messages of p; are
delayed. Indeed, p; will output F' and know that some process has indeed
crashed but will not know which one.

Hence, in a system where two processes can crash but a majority is correct,
then P is not needed to solve NBAC. There is a failure detector that is strictly
weaker and this failure detector solves NBAC.

6. We show below that in a system where at most one process can crash,
we can emulate a perfect failure detector if we can solve NBAC. Indeed,
the processes go through sequential rounds. In each round, the processes
bebBrodcast a message I-Am-Alive to all and trigger an instance of NBAC
(two instances are distinguished by the round number at which they were
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triggered). In a given round r, every process waits to decide the outcome of
NBAC: if this outcome is 1, then p; moves to the next round. If the outcome
is 0, then p; waits to bebDeliver N — 1 messages and suspects the missing
message. Clearly, this algorithm emulates the behavior of a perfect failure
detector P in a system where at most one process crashes.

7. The specification looks simple but is actually bogus. Indeed, nothing pre-
vents an algorithm from changing leaders all the time: this would comply with
the specification. Such a leader election abstraction would be useless, say for
a primary-backup replication scheme, because even if a process is leader, it
would not know for how long and that would prevent it from treating any
request from the client. This is because we do not explicitly handle any no-
tion of time. In this context, to be useful, a leader must be stable: once it is
elected, it should remain leader until it crashes.

8. A specification with properties (1), (2) and (3) makes more sense but still
has an issue: we leave it up to the algorithm that implements the leader
election abstraction to choose the leader. In practice, we typically expect the
clients of a replicated service to know which process is the first leader, which
is the second to be elected if the first has crashed, etc. This is important
for instance in failure-free executions where the clients of a replicated service
would consider sending their requests directly to the actual leader instead of
broadcasting the requests to all, i.e., for optimization issues. Our specifica-
tion, given in the core of the chapter, is based on the knowledge of an ordering
function that the processes should follow in the leader election process. This
function is not decided by the algorithm and can be made available to the
client of the leader election abstraction.

9. Yes. More precisely, we discuss below that if we have a leader election
abstraction, then we can emulate a perfect failure detector. This means that
the perfect failure detector is not only sufficient to solve leader election, but
also necessary. The emulation idea is simple. Every process p; triggers N — 1
instances of leader election, each one for a process p; different from p;. In
instance j, O(p;) = 0 and O(p;) = {p;}, for every p; # p;. Whenever p; is
elected leader in some instance j, p; accurately detects the crash of p;.
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